
aprof user manual

Title aprof (ALMA profiler)
Author Nikolaos Kavvadias
Contact nkavv@uop.gr
Website http://www.nkavvadias.com
Release Date 06 May 2013
Version 0.4.0
Rev. history
v0.1.0 31-07-2012

Draft/preliminary binary release of nac2c, the compiled
simulator of aprof.

v0.2.0 31-08-2012
Source release for the 1st increment of nac2c.

v0.3.0 30-11-2012
Binary release for the 1st draft release of aprof. nac2c is
now considered a component of aprof.

v0.4.0 06-05-2013
Added tutorial section in README.

1. Introduction
“aprof” (ALMA profiler) is a performance and resource utilization estimation tool. For
obtaining these measures, “aprof” implements an abstract machine with unlimited re-
sources. It accepts input specification in either the NAC (N-Address Code) intermedi-
ate representation or ALMA IR (ANSI C) form. “aprof” produces two basic outcomes,
a) the number of dynamic abstract machine cycles and b) basic block operation sched-
ule that indicates resource utilization for a given application.

“aprof” consists of the following components:

∙ “libnac” is the implementation of an API as a static library that allows for stor-
ing, manipulating and examining NAC IR. For instance, the scheduler engines
are considered as part of “libnac”. As of the 0.3.0 release, two schedulers are
available for a sequential and an intra-block parallel machine model.

∙ “nac2c” is an (application-specific) compiled simulator generator. The compiled
simulators are then executed on a host platform (typically: x86-32).

∙ “instrument” is a collection of small C and TXL tools that allow for inserting
basic block counters in order to obtain basic block execution frequencies.

1

mailto:nkavv@uop.gr
http://www.nkavvadias.com

∙ “prof” is a collection of small C and AWK tools for inserting the necessary code
in compiled simulators for generating profiling reports.

The current NAC specification is detailed in the corresponding reference manual
found in the /doc subdirectory in HTML and PDF form.

2. Obtaining and setting up aprof
aprof releases use the aprof-[src|lin|win]-yymmdd.tar.bz2 naming con-
vention.

∙ Select src for source, lin for Linux or win for Windows binaries release

∙ yymmdd is the release date

2.1 Obtaining aprof
Download aprof from the ALMA intranet (UOP directories).

Unarchive to a local directory:
e.g. C:/cygwin/home/user for Windows/Cygwin users
or /home/user for a Linux user

2.2 Setting up optional tools
For using aprof, a Linux or Windows installation is required. For Windows, Cygwin is
suggested (optional) in order to significantly ease the use of aprof.

In any case, standard Unix/Linux tools are expected:

∙ bash

∙ make

∙ patch

∙ gawk

Boehm’s garbage collector is also required, but is included both in source and com-
piled form (binary releases only) within the /thirdparty subdirectory.

For Windows:

∙ Go to http://sources.redhat.com/cygwin/

∙ Download the automated web installer (setup.exe)

∙ Copy it to an empty local directory (e.g. C:\temp\cygwin)

∙ Click setup.exe

∙ Select Install from the Internet. Make sure to select make since it
might be disabled in the preselection.

Cygwin will then be setup in the C:\cygwin directory of your Windows OS.
For Linux:

∙ Any recent Linux distribution should do; try using Ubuntu 11.10.

2

http://sources.redhat.com/cygwin/

2.3 aprof setup
There is no actual installation procedure; the user should just unzip the aprof-[lin|win]-yymmdd.tar.bz2
binary release archive to a local directory. Usual choices include C:/cygwin/home/user
for Windows (no Cygwin) users and /home/user for Windows Cygwin/Linux users
where user is the name of the current user.

Then, change directory to /home/user/aprof. On Cygwin for instance, type:

$ cd /home/user/aprof

Set up the APROFTOP environmental variable:

$ source env.sh

The location of the garbage collector is adjusted accordingly in the corresponding
makefiles.

You may add the /aprof/bin directory to your path:

$ export PATH=$APROFTOP/bin:$PATH

2.4. Building from sources
This subsection is relevant only to the source releases of aprof (aprof-src-yymmdd.tar.bz2).
To build aprof from sources the following are required:

A) For Linux users:

∙ A typical Linux installation (bash, make, gawk)

∙ The TXL compiler from http://www.txl.ca (e.g. version 10.6)

∙ In case you want to use your system’s gc, change GCPATH in /src/Makefile.linux
accordingly. Then run the build script from the top-level subdirectory:

$ cd /home/user/aprof

$./build-lin.sh

∙ If you want to recompile gc, use the build-a.sh script. The script should be
changed accordingly (comment and uncommented certain lines) for selecting ei-
ther gc6.8 or gc-7.2alpha6 or for enabling a Windows Cygwin or a Linux
build.

$./build-lin-a.sh

B) For Windows users:

∙ Windows XP SP2 or older (untested on newer systems).

∙ Cygwin environment (bash, make, gawk). Cygwin can be installed via an auto-
mated web installer (setup.exe) from http://sources.redhat.com/cygwin/

∙ TXL installation for Cygwin.

3

http://www.txl.ca
http://sources.redhat.com/cygwin/

∙ Run the build script from the top-level subdirectory of aprof:

$ cd /home/user/aprof

$./build.sh

∙ Similarly to the Windows case, for rebuilding gc, use the following:

$./build-a.sh

3. File listing
The aprof distribution includes the following files. Files and/or directories denoted
by a capital S are available in source releases of aprof. Similarly, a capital B denotes
files/directories present solely in binary releases:

/aprof Top-level directory
COPYRIGHT aprof (binary or source code) license.
S build.sh
S build-a.sh
S build-lin.sh
S build-lin-a.sh
S clean.sh

Build script for aprof (Windows).
Build script for aprof and gc (Windows).
Build script for aprof (Linux).
Build script for aprof and gc (Linux).
Cleans up the /bin and /src subdirectories.

env.sh Script to setup the environment.
B /aprof/bin Binaries’ directory
fixnac.exe
meascycles.exe
nac2c.exe
nacbbinscount.exe
nacparser.exe
nactoglobal.exe
cygwin1.dll

fixnac executable for either Windows or Linux.
meascycles executable for either Windows or Linux.
nac2c executable for either Windows or Linux.
nacinsbbcount exec. for either Windows or Linux.
nacparser executable for either Windows or Linux.
nactoglobal executable for either Windows or Linux.
Cygwin API DLL (not required with a Cygwin setup).

/aprof/doc Documentation
README
README.html
README.pdf
nac-refman.txt
nac-refman.html
nac-refman.pdf

This file.
HTML version of README.
PDF version of README.
Reference manual for the NAC programming language.
HTML version of the above.
PDF version of the above.

S /aprof/src Main source directory
/aprof/src/instrument “instrument” directory
Makefile
build.sh
fixnac.c
nac.Grm
nacinsbbcount.txl
nacparser.txl
nactoglobal.txl

Makefile for Windows Cygwin and Linux.
Bash script for building the TXL applications.
Applies additional fixes to an instrumented NAC file.
TXL grammar for NAC.
Inserts basic block counters in NAC programs.
NAC parser and pretty-printer.
Moves all declarations to the earliest possible site.

4

/aprof/src/libnac “libnac” directory
Makefile
Makefile.linux
attrgraph.[c|h]
cdfa.[c|h]
cga.[c|h]
datastructs.h
emit.[c|h]
genansic.[c|h]
genmacros.h
graph.[c|h]
item.[c|h]
list.[c|h]
machine.[c|h]
lexer.patch
nac.[c|h]
nac.[l|y]
sched.[c|h]
symtab.[c|h]
utils.[c|h]

Makefile for Windows Cygwin.
Makefile for Linux.
Attributed graphs API.
Control and data flow analyses API (includes SSA).
Call graph API (mainly SSA).
Basic data structures and enums.
Emitters for graph representations.
ANSI C code generation routines.
General purpose C macros.
Graph manipulation API
CDFG (Control-Data Flow Graph) items API.
Doubly-linked list and iterators API.
Machine paramteters for the NAC abstract machine.
Patch for the NAC lexer (lex.nac.c).
NAC (N-Address Code) manipulation API.
Lexer and parser for the NAC programming language.
Scheduling (naive, ASAP) API.
Symbol table API.
Various utility functions.

/aprof/src/nac2c “nac2c” directory
Makefile
Makefile.linux
nac2c.c

Makefile for Windows Cygwin.
Makefile for Linux.
Driver code and option parsing for nac2c.

/aprof/src/prof “prof” directory
Makefile
build.sh
countbbs.awk
meascycles.c

Makefile for Windows Cygwin and Linux.
Bash script for building the TXL applications.
Counts the number of BBs in a NAC translation unit.
Counts the number of abstract machine cycles spent.

/aprof/tests Test suite directory
*.0.nac The aprof test suite. Includes 30 applications, each in the

corresponding subdirectory: (binarysearch, bitrev, bub-
blesort, cordic, divider, editdist, fact, factr, fibo, fibor, fir,
fixsqrt, frac, gcd, knapsack, loop1, mandel, matmult, min-
imal, mips, multiply, perfect, popcount, sieve, smithwater-
man, sobel, tak, thornapprox, xorshift, yuv2rgba).

*.c Reference C implementation for test suite, used for gener-
ating reference data.

clean-tests.sh
run-aprof.sh
run-aprof-app.sh

Clean the debris in all /tests subdirectories.
Run the entire test suite.
Run a single application from test suite.

thorn.pgm PGM image required for running the thornapprox
benchmark.

/aprof/thirdparty Third-party source/binaries directory

5

B /gc
B /gc-linux
B /gc-mingw

Garbage collector binaries for Windows Cygwin.
Garbage collector binaries for Linux.
Garbage collector binaries for Windows MingW.

/src Source code versions of the garbage collector.

4. aprof tools usage

4.1 nac2c usage
The basic usage of nac2c follows the syntax:

$./nac2c.exe [options] input.nac

The translated C representation of input.nac is produced in a series of out-
put files called input<i>_nac.c, separately for each NAC-level procedure, where
input<i> is the name of the corresponding procedure. Pre-existing files are over-
written.

options‘ is one or more of the following:

-d Enable debug output.

-force-data-types Force predefined data types as given in NAC code. Essentially dis-
ables the effect of both interval analysis and the alternative of using the unknown
data type na.

-ssa Internal construction of SSA (Static Single Assignment) form.

-pseudo-ssa Internal construction of local SSA-like form.

-use-aycockhorspool Enables SSA construction using the Aycock-Horspool algorithm.

-keep-ssa Does not perform out-of-SSA conversion and thus keeps PHI statements in
the generated CDFGs.

-phi-bbs Enable the generation of BB arguments in phi NAC statements.

-no-phi-bbs Disable the generation of BB arguments in phi statements (default).

-emit-ansic Emit the equivalent ANSI C program after processing (including SSA
conversion, if enabled).

-emit-cdfg Generate the Graphviz representations for all procedure CDFGs.

-emit-cfg Generate the Graphviz representations for all procedure CFGs.

-emit-cg Generate the Graphviz representation of the application call graph.

-gcc Generate Makefile for GCC compilation (default).

-llvm Generate Makefile for LLVM compilation and/or interpretation.

6

4.2 fixnac usage
The basic usage of fixnac follows the syntax:

$./fixnac.exe [options] -i input.nac -o output.nac

Additional fixes are applied to the instrumented input.nac such as the additon
of the declaration of the globalvar BB array for storing BB execution frequencies.

options‘ is one or more of the following:

-h Print this help.

-decl-bb-array Declare the _BB globalvar.

-init-bb-array Initialize the _BB globalvar to zeros. Only in the effect if -decl-bb-
array has been defined.

-max-bbs <num> Specify the maximum number of basic blocks in a program. De-
fault: 10000.

4.3 meascycles usage
The basic usage of meascycles follows the syntax:

$./meascycles.exe input.nac

It reads the input.nacwhich is assumed to be uninstrumented, the input_prof.txt
profiling report file and the corresponding input_sched.txt scheduling data file.
Then it reports the total number of dynamic abstract machine cycles in the following
form:

"Number of abstract machine cycles: %lld

as a C-based long long int (64-bit signed integer).

4.4 TXL passes
Executables generated by TXL passes source files share a common invocation style:

$./<trans>.exe input.nac -q -raw > output.nac

This scheme applies for executables nacbbinscounters, nacparser and
nactoglobal.

4.5 countbbs.awk usage
This AWK script generates a textual report named bbs.txt that stores the total num-
ber of basic blocks in the given NAC translation unit. countbbs is invoked as follows:

$ gawk -f ${APROFTOP}/countbbs.awk < ${app}.nac > bbs.txt

7

5. Running the test suite
The basic tests under the /tests subdirectory can be exercised by running corresponding
test script:

$ cd $APROFTOP

$ cd tests

$./run-aprof.sh

Alternatively, each application can be tested separately using the run-aprof-app.sh
script, e.g. as follows for the case of the fibo benchmark:

$./run-aprof-app.sh fibo

By running a benchmark, the following files can be generated, if using the appropri-
ate options, assumably for a benchmark called app comprising of proc procedures:

ansic.mk Makefile for GCC or LLVM compilation.
bbs.txt Total number of BBs in the NAC translation unit.
builtin_names.txt Name listing of builtin (black box) functions.
proc.dot
proc.dot.png

CDFG representation in Graphviz for procedure proc.
Visualization of the Graphviz CDFG for procedure proc.

proc_cfg.dot
proc_cfg.dot.png

CFG representation in Graphviz for procedure proc.
Visualization of the Graphviz CFG for procedure proc.

app_cg.dot
app_cg.dot.png

Call graph representation in Graphviz for app.
Visualization of the Graphviz call graph for app.

app.nac Working NAC representation of the application.
app.exe Executable generated by the C implementation of app.
app_test_data.txt Reference test data generated by app.exe.
app_prof.txt Basic block profiling report.
app_sched.txt Scheduling report (number of static cycles per BB).
main.c Generated C code containing the main() function.
main.h Header/interface file for the generated files.
proc_nac.c Backend C code generated from the corresponding NAC.
procedure_names.txt Name listing of the procedures used in app.

6. Step-by-step guide to profiling
This section provides detailed information on the actual process of profiling. First,
in order to profile an application which is assumed to be contained in a single NAC
translation unit, two files are required:

∙ app.0.nac, which is the NAC representation of the application

∙ app.c, which is a C implementation that is used in the context of aprof for
reference input/output data generation.

8

As a test vehicle, the iterative implementation of a factorial computation will be
used, namely the fact application. Thus, the corresponding initial files are fact.0.nac
and fact.c.

The contents of fact.0.nac are as follows:

procedure fact (in s32 n, out s32 y)
{

localvar s32 res;
localvar s32 x;
localvar s32 i;

L0005:
x <= mov n;
res <= ldc 1;
i <= ldc 1;
D_1363 <= jmpun;

D_1362:
res <= mul res, i;
i <= add i, 1;
D_1363 <= jmpun;

D_1363:
D_1362, D_1364 <= jmple i, x;

D_1364:
y <= mov res;

}

Since NAC is a relatively low-level language, a high-level language frontend would
have to be used for profiling larger applications. In this sense, fact.c would serve as
input to a C frontend producing NAC output.

The reference fact.c has the following contents:

#ifdef TEST
#include <stdio.h>
#endif

int fact(int n) {
int res, x, i;
x = n;
res = 1;
for (i = 1; i <= x; i++) {

res = res * i;
}
return res;

}

#ifdef TEST
int main() {

int i;
int result;
for (i = 0; i <= 13; i++) {

result = fact(i);
printf("%08x %08x\n", i, result);

9

}
return 0;
}
#endif

To automate the profiling process, it is more suitable to use scripting. The aprof
distribution contains reference scripts for profiling. Specifically, the run-aprof-app.sh
can be used.

The rest of this guide will provide a detailed view of the approach taken by the
aforementioned script in the form of a series of steps. The $APROFTOP environmental
variable is the path to the top-level directory of aprof.

6.1 Generation of the reference test data
Assuming that gcc is used as the host machine compiler, the following prompt gener-
ates the corresponding executable:

gcc -DTEST -DDATAGEN -Wall -O2 -o fact.exe fact.c

Then, the reference data can be generated:

./$fact.exe >& fact_test_data.txt

The contents of fact_test_data.txt are input and output values for n and
y=fact(n) in hexadecimal form:

00000000 00000001
00000001 00000001
00000002 00000002
00000003 00000006
00000004 00000018
00000005 00000078
00000006 000002d0
00000007 000013b0
00000008 00009d80
00000009 00058980
0000000a 00375f00
0000000b 02611500
0000000c 1c8cfc00
0000000d 7328cc00

6.2 Create a working copy of the NAC representation of fact
This can be accomplished by copying fact.0.nac to fact.nac:

cp -f fact.0.nac fact.nac

6.3 Tracking the number of basic blocks in the unit
The following bash script variable

10

num_bbs="0"

is used for maintaining the number of basic blocks in the NAC translation unit.

6.4 Generate the bbs.txt file
An AWK script, countbbs.awk is used for counting the basic blocks in the entire
translation unit. This is performed by enumerating the labels in the NAC program,
since all NAC basic blocks have explicit labels:

gawk -f ${APROFTOP}/src/prof/countbbs.awk < fact.nac >
bbs.txt

Then, the bbs.txt file is processed, to get the number of basic blocks:

Process the bbs.txt file.
bbsfile="bbs.txt"
while read -r bbs;
do

num_bbs="${bbs}"
done < ${bbsfile}

A while loop is used, in order to extract all the basic block counts in bbs.txt
in case of a multi-translation unit application (currently unsupported by most features
of aprof).

6.5 Instrumentation of the NAC file
The nacinsbbcount TXL pass inserts profiling code for dynamic basic block count-
ing in NAC programs:

$APROFTOP/bin/nacinsbbcount.exe fact.nac ${txlopts} >
fact.1.nac

A usual setup for TXL options is:

txlcopts="-q -raw"

Then, fixnac is invoked for adding bookkeeping code as for the declaration of
the _BB global array, its initialization and specifying the maximum number of basic
blocks in the program.

APROFTOP/bin/fixnac.exe -decl-bb-array -init-bb-array \

-max-bbs ${num_bbs} -i fact.1.nac -o fact.2.nac

cp -f fact.2.nac fact.nac

The resulting fact.nac representation is as follows:

globalvar u64 _BB[4]={0,0,0,0};
procedure fact(in s32 n,out s32 y)
{

11

localvar s32 res;
localvar s32 x;
localvar s32 i;
localvar u32 _temp_addr;
localvar u32 _temp_data;

L0005:
_temp_addr <= ldc 0;
_temp_data <= load _BB,_temp_addr;
_temp_data <= add _temp_data,1;
_BB <= store _temp_data,_temp_addr;
x <= mov n;
res <= ldc 1;
i <= ldc 1;
D_1363 <= jmpun;

D_1362:
_temp_addr <= ldc 1;
_temp_data <= load _BB,_temp_addr;
_temp_data <= add _temp_data,1;
_BB <= store _temp_data,_temp_addr;
res <= mul res,i;
i <= add i,1;
D_1363 <= jmpun;

D_1363:
_temp_addr <= ldc 2;
_temp_data <= load _BB,_temp_addr;
_temp_data <= add _temp_data,1;
_BB <= store _temp_data,_temp_addr;
D_1362,D_1364 <= jmple i,x;

D_1364:
_temp_addr <= ldc 3;
_temp_data <= load _BB,_temp_addr;
_temp_data <= add _temp_data,1;
_BB <= store _temp_data,_temp_addr;
y <= mov res;

}

6.6 Generation of the backend C files for the given NAC t.u.
The profiling process is based on the generation of a compiled simulator for the NAC
program. This is accomplished with the use of the nac2c decompiler which is applied
on the original form of the application (fact.0.nac). This is needed in order to
extract the static schedule of the initial form of the application.

Either the sequential or the ASAP scheduler can be used, which correspondingly
reflect a sequential or intra-block parallel abstract machine.

First, a static scheduling extraction run of nac2c must be performed.
For enabling the sequential scheduler the following should be used:

$APROFTOP/bin/nac2c.exe -force-data-types -emit-ansic
-emit-cdfg -sched-naive fact.0.nac

12

The ASAP scheduler is enabled as follows, since it mandates at least pseudo-SSA
(Static-Single Assignment):

$APROFTOP/bin/nac2c.exe -force-data-types -ssa
-pseudo-ssa \

-emit-ansic -emit-cdfg -sched-asap fact.0.nac

Then, nac2c generates a multitude of files, which have been detailed in Section 5.
A file named fact_sched.txt is expected to be passed to a second run of

aprof, which is the profiling run:

cp -f fact.0_sched.txt fact_sched.txt

fact.sched.txt contains the estimated static cycles per basic block:

5
4
2
2

aprof proceeds with the second run of nac2c:

$APROFTOP/bin/nac2c.exe -force-data-types -emit-ansic
-emit-cdfg -prof fact.nac

6.7 Optional step for generating CDFG views
Optionally, the Graphviz (*.dot) representation of each NAC procedure can be visual-
ized using the following snippet:

procfile="procedure_names.txt"
while read -r app2;
do

echo "Creating CDFG view for ${app2}"
dot -Tpng -O ${app2}.dot

done < ${procfile}

6.8 Building and running the compiled simulator
In this step, the ansic.mk generated Makefile must be run in order to build main.exe,
which is the compiled simulator for the examined application, fact.

$ make -f ansic.mk clean

$ make -f ansic.mk

$./main

This run produces fact_prof.txt which contains dynamic basic block counts:

14
91
105
14

13

6.9 Calculation of dynamic abstract machine cycles
Finally, meascycles is used for combining the dynamic basic block counts written in
fact_prof.txtwith the static cycle estimates which are found in fact_sched.txt:

$APROFTOP/bin/meascycles.exe fact.nac“

As a result, the profiling estimate is produced in the standard output. For instance,
the sequential scheduler produces:

Number of abstract machine cycles: 650

while the ASAP scheduler computes the following:

Number of abstract machine cycles: 551

7. Contact
You may contact me for further questions/suggestions/corrections at:

Nikolaos Kavvadias <nkavv@uop.gr>
<nikolaos.kavvadias@gmail.com>

http://www.nkavvadias.com
Department of Computer Science and Technology
University of Peloponnese
Tripoli, Greece

14

mailto:nkavv@uop.gr
mailto:nikolaos.kavvadias@gmail.com
http://www.nkavvadias.com

	1. Introduction
	2. Obtaining and setting up aprof
	2.1 Obtaining aprof
	2.2 Setting up optional tools
	2.3 aprof setup
	2.4. Building from sources

	3. File listing
	4. aprof tools usage
	4.1 nac2c usage
	4.2 fixnac usage
	4.3 meascycles usage
	4.4 TXL passes
	4.5 countbbs.awk usage

	5. Running the test suite
	6. Step-by-step guide to profiling
	6.1 Generation of the reference test data
	6.2 Create a working copy of the NAC representation of fact
	6.3 Tracking the number of basic blocks in the unit
	6.4 Generate the bbs.txt file
	6.5 Instrumentation of the NAC file
	6.6 Generation of the backend C files for the given NAC t.u.
	6.7 Optional step for generating CDFG views
	6.8 Building and running the compiled simulator
	6.9 Calculation of dynamic abstract machine cycles

	7. Contact

