
hlo user manual

Title hlo (TXL-based C optimizer)
Author Nikolaos Kavvadias
Contact nkavv@uop.gr

nikolaos.kavvadias@gmail.com
Website http://www.nkavvadias.com
Release Date 06 May 2013
Version 1.5.0
Rev. history
v1.0.0 01-12-2011

First official release.
v1.1.0 09-01-2012

Fixes in partial and full loop unrolling, additions to canoni-
calization pass, added 16 PolyBench benchmarks.

v1.2.0 29-02-2012
Added cavity detection (cavdet) benchmark, XML change
file generator.

v1.3.0 15-05-2012
Added files for fixing XML change files.

v1.4.0 10-06-2012
Converted documentation to RestructuredText; added tuto-
rials and additional information.

v1.4.1 22-12-2012
Fixed bugs/issues reported: executable naming convention
invalid simplification of certain expressions by Ccanon).

v1.4.2 01-01-2013
New arithmetic-oriented optimizations and documentation
update. Removed XML change file generator.

v1.5.0 06-05-2013
Many updates to arithmetic optimizations. Significant doc-
umentation updates. Reworked organization of the current
code base.

1. Introduction
“hlo” is a collection of C-to-C code transformation tools written in the Turing eX-
tender Language (TXL) (http://www.txl.ca). Each transformation is implemented as a

1

mailto:nkavv@uop.gr
mailto:nikolaos.kavvadias@gmail.com
http://www.nkavvadias.com
http://www.txl.ca

separate executable compiled from the corresponding TXL source file.
“hlo” also includes several auxiliary files such as awk programs, C helper programs

and the “kdiv” and “kmul” single constant division and multiplication optimizers.

1.1. Why TXL?
TXL provides the means for developing grammatical transformations without the need
to expose internal ASTs. It also allows for agile parsing, which assists in simplifying
analyses and optimizations.

2. Obtaining and setting up hlo
Autonomous hlo releases use the hlo-[lin|win]-yymmdd.tar.bz2 naming
convention.

∙ Select lin for Linux or win for Windows binaries release

∙ yymmdd is the release date

2.1 Obtaining hlo
Download hlo, the HLO (High-Level Optimizer) from the ALMA intranet:
https://svn.alma-project.eu/Participants/UOP/HLO/

Unarchive to a local directory
e.g. C:/cygwin/home/user for Windows/Cygwin users
/home/user for a Linux user.

2.2 Setting up optional tools
For using hlo, a Linux or Windows installation is required. For Windows, Cygwin is
suggested (optional) in order to significantly ease the use of hlo.

In any case, standard Unix/Linux tools are expected:

∙ bash

∙ make

∙ diff

∙ grep

∙ gawk

For Windows:

∙ Go to http://sources.redhat.com/cygwin/

∙ Download the automated web installer (setup.exe)

∙ Copy it to an empty local directory (e.g. C:\temp\cygwin)

∙ Click setup.exe

2

https://svn.alma-project.eu/Participants/UOP/HLO/
http://sources.redhat.com/cygwin/

∙ Select Install from the Internet. Make sure to select make since it
might be disabled in the preselection.

Cygwin will then be setup in the C:\cygwin directory of your Windows OS.
For Linux:

∙ Any recent Linux distribution should do; try using Ubuntu 12.04 LTS.

2.3 hlo setup
There is no actual installation procedure; the user should just unzip the hlo-[lin|win]-yymmdd.tar.bz2
archive to a local directory. Usual choices include C:/cygwin/home/user for
Windows/Cygwin users and /home/user for Linux users where user is the name
of the current user.

Then, change directory to /home/user/hlo. On Cygwin for instance, type: | $
cd /home/user/hlo

Set up the HLOTOP environmental variable: | $ source env.sh
You may add the /hlo/bin directory to your path: | $ export PATH=$HLOTOP/bin:$PATH

2.4. Building from sources
This subsection is relevant only to the source releases of hlo (hlo-src-yymmdd.tar.bz2).
To build hlo from sources the following are required:

A) For Linux users:

∙ A typical Linux installation (bash, make)

∙ A binary installation of TXL. See http://www.txl.ca (download section) for de-
tails. In short, you have to retrieve a TXL release for Linux, uncompress the
archive and then run the InstallTxl script:

$./InstallTxl

∙ Run the build script from the top-level subdirectory:

$ cd /home/user/hlo

$./build.sh

B) For Windows users:

∙ Windows XP SP2 or Windows 7 (untested on other systems).

∙ Cygwin environment (bash, make). Cygwin can be installed via an automated
web installer (setup.exe) from http://sources.redhat.com/cygwin/

∙ A binary installation of TXL. See http://www.txl.ca (download section) for de-
tails. In short, you have to retrieve a TXL release for Windows (Cygwin release
is proposed), uncompress the archive and then run the InstallTxl script:

$./InstallTxl

∙ Run the build script from the top-level subdirectory of hlo:

3

http://www.txl.ca
http://sources.redhat.com/cygwin/
http://www.txl.ca

$ cd /home/user/hlo

$./build.sh

3. File listing
The hlo distribution includes the following files. Files denoted by a capital S are not
available in binary releases of hlo:

/hlo Top-level directory
S build.sh
S clean.sh
clean-log.sh
clean-suite.sh
env.sh
hlo.sh
run-suite.sh

Build script for HLO (source only).
Cleaning/removal script for HLO (source only).
Cleans up the /log subdirectory.
Script to clean up debris in the /suite subdirectory.
Script to setup the environment (use as: source env.sh)
The main script for using HLO transformations.
Simple script to exercise the test suite.

/hlo/bin Binaries’ directory
C*.exe
c*.sh
cygwin1.dll
flattenarrinit.exe
kdiv.exe
kmul.exe

Executables for applying code transformations (45 files).
Run scripts for specific code transformations (12 files).
Cygwin DLL for standalone operation on Windows.
Lexer for flattening initialization of C arrays.
The core executable of the constant division optimizer.
The core executable of the constant multiplication opti-
mizer.

specialpows.exe Helper executable for generating TXL rule namings for
division and modulo optimizations for specific constants
related to powers-of-2.

transform.sh Common script for a number of C-to-C transformations.
/hlo/doc Documentation
hlo-flow.dot Graphviz/DOT file representing a simple proposed flow

for using HLO transformations.
hlo-flow.png PNG image showing a graphical view of using HLO trans-

formations.
MANIFEST
README
README.GnuC
README.html
README.pdf

Complete file listing of the source distribution.
This file.
README for the TXL GnuC grammar (verbatim copy).
HTML version of README.
PDF version of README.

/hlo/log Empty directory by default; it is populated by the gener-
ated files from running test scripts from /scripts.

/hlo/scripts Scripts’ directory
run-c*.sh Test scripts that exercise specific code transformations us-

ing small test cases from the /tests subdirectory (25 files).
/hlo/src Source directory with subdirectories for ANSI C, lex,

yacc, awk, kdiv, kmul and TXL
S /hlo/src/ansic Directory for ANSI C, lex and yacc sources

4

flattenarrinit.l Lexer for flattening optimizations of multidimensional ar-
rays in C.

flattenarrinit.mk
specialpows.c

Makefile for building the flattenarrinit lexer.
Generator of TXL rule names and invocations for specific
cases of division and modulo optimization.

specialpows.mk Makefile for building the flattenarrinit lexer.
/hlo/src/awk Directory for awk sources
remblanklines.awk
remdupllines.awk

Removes blank (empty) lines.
Removes duplicate lines.

/hlo/src/kdiv Directory for kdiv sources
* Consult /hlo/src/kdiv/README for more details.
/hlo/src/kmul Directory for kmul sources
* Consult /hlo/src/kmul/README for more details.
/hlo/src/txl Directory for TXL sources
C.Grm
C_attrs.Grm

The TXL GnuC grammar (minor changes against txl.ca).
GnuC grammar extensions for expression, declaration and
statement attributes.

NonGNUC.Grm
S C*.Txl
macros.h

Pure ANSI C TXL grammar that is not used.
TXL source code for each code transformation (45 files).
C header file with some common macros.

/hlo/suite Test suite directory
*.c The hlo test suite. Includes 12 applications (divider, eda,

edgedet, fir, fsme, mandel, matmult, mc, rcdct, sierpinski,
sumarray, tssme). Additionally, some PolyBench applica-
tions have been included: 2mm, 3mm, atax, bicg, doitgen,
dynprog, gemm, gesummv, mvt, symm, syrk, trmm.

/hlo/tests Regression tests directory
*.c Small test cases for use with the scripts in the /scripts sub-

directory.

4. Supported transformations
Currently, three kinds of transformations are supported: generic restructuring transfor-
mations, loop-specific and arithmetic-oriented optimizations.

4.1 Generic restructuring transformations
The first category (generic restructuring transformations - GRT) comprise of the fol-
lowing:

Carrayflatten
C transformation to flatten definitions and uses of 2-dimensional and
3-dimensional C arrays into single-dimensional arrays. In order to also
flatten array initializations the /hlo/src/ansic/flattenarrinit.l

5

http://sourceforge.net/projects/polybench/

lexer must be used.
PARAMETERS: --
KNOWN ISSUES: In order for an array to be flattened, its declaration
should be syntactically visible in the same C source file. For arrays
declared externally, an extern declaration should be used.

Ccanon
simple code canonicalizations (removing i++, i--, ++i, --i, +=, -=, *=, /= etc
idioms).
PARAMETERS: --
KNOWN ISSUES: --

Ccombexpstmt
combines consecutive C assignments using the comma separator.
PARAMETERS: --
KNOWN ISSUES: --

Ccommonsubexp
performs common subexpression elimination.
PARAMETERS: --
KNOWN ISSUES: This is currently Work-In-Progress (WIP).

Cconvfromnactypes
C transformation to convert from NAC to ANSI C data types. This version
applies for splitted declarations (a single declaration per line).
PARAMETERS: --
KNOWN ISSUES: --

Cconvtonactypes
C transformation to convert from ANSI C to NAC data types. This version
applies for splitted declarations (a single declaration per line).
PARAMETERS: --
KNOWN ISSUES: --

Cconvfromnactypespecs
C transformation to convert from NAC to ANSI C data types. This version
applies to occurences of the [type_specifier] grammar type. It is
expected to apply more generally than Cconvfromnactypes.
PARAMETERS: --
KNOWN ISSUES: --

Cconvtonactypespecs
C transformation to convert from ANSI C to NAC data types. This version
applies to occurences of the [type_specifier] grammar type. It is
expected to apply more generally than Cconvtonactypes.

6

PARAMETERS: --
KNOWN ISSUES: --

Cdecombexpstmt
splits C assignments that are combined using the comma separator.
PARAMETERS: --
KNOWN ISSUES: --

Cdowhiletofor
Syntactic conversion of do-while into for loops.
PARAMETERS: --
KNOWN ISSUES: Expect an index increment of the form Ix = Ix +
Expr.

Cfortodowhile
Syntactic conversion of for into do-while loops.
PARAMETERS: --
KNOWN ISSUES: Expect an index increment of the form Ix = Ix +
Expr.

Cfortowhile
Syntactic conversion of for into while loops.
PARAMETERS: --
KNOWN ISSUES: Expect an index increment of the form Ix = Ix +
Expr.
The index initialization assignment immediately preceeds the while statement.

Cfuncdefs
Extract function definitions (and bodies) from single-translation unit C files.
PARAMETERS: --
KNOWN ISSUES: --

Cfunctomacrocall
C transformation for replacing function by macro calls.
PARAMETERS: --
KNOWN ISSUES: --

Cparse
a parser for the supported C grammar with GNU extensions; it is technically a
“neutral” transformation since it only parses and does not transform the input
source file.
PARAMETERS: --
KNOWN ISSUES: --

Credundant
TXL transformation to remove unused declarations in a C program.

7

PARAMETERS: --
KNOWN ISSUES: --

Csdevect2,4,8
statement devectorization transformations. Splits vectorized C statements
(multiple independent C statements, concatenated by commas).
PARAMETERS: --
KNOWN ISSUES: --

Csplitlocaldecls
split function scope variable declarations.
PARAMETERS: --
KNOWN ISSUES: --

Csvect2,4,8
statement vectorization transformations. Concatenates multiple independent C
statements to a single comma-separated statement.
PARAMETERS: --
KNOWN ISSUES: --

Ctoglobal
TXL transformation to move all (localvar) declarations in a C program to the
earliest position in the current scope.
PARAMETERS: --
KNOWN ISSUES: --

Ctolocal
TXL transformation to move all (localvar) declarations in a C program to their
most local location prior their definition.
PARAMETERS: --
KNOWN ISSUES: --

Ctolocalepilogue
TXL transformation to move all (localvar) declarations in a C program to the
most local location in the current function scope. The result is a syntactic
form of C that is not compatible with the standard. It is meant to be used as
an intermediate form for easing the application of data-flow queries and
simple data-flow analyses.
PARAMETERS: --
KNOWN ISSUES: --

Cwhiletofor
syntactic conversion of while into for loops
PARAMETERS: --
KNOWN ISSUES: Expect an index increment of the form Ix = Ix +

8

Expr. The index initialization assignment immediately preceeds the while
statement.

4.2 Loop-specific optimizations
The second category (loop-specific optimizations - LSO) comprise of the following:

Cloopbump
Alter the boundaries of loop by adding an offset.
PARAMETERS: offset, step
KNOWN ISSUES: Applicable to innermost loops. Expects a final loop bound
expression of the form: Ix <= Expr.

Cloopcoalescing
Combines nested loops into a single loop, reducing to a single induction
variable, and computing the indices from that variable.
PARAMETERS: --
KNOWN ISSUES: Applicable to innermost loops. Expects a final loop bound
expression of the form: Ix <= Expr or Ix < Expr. Only usable following
loop normalization.

Cloopextension
Extends the boundaries of a loop to a lower initial and a higher final boundary
value.
PARAMETERS: lo, hi
KNOWN ISSUES: Applicable to innermost loops. Expects a loop increment
expression of the form: Ix = Ix + Expr.

Cloopfullunrolling
Fully unroll a loop, so that all control overhead is eliminated.
PARAMETERS: --
KNOWN ISSUES: Expects loops of the form for (i = 0; i < N; i =
i + 1), i.e. normalized loops. A single statement is expected within the loop
body.

Cloopfusion
Loop fusion merges two loops into one loop containing both of the initial loop
bodies. The two loops must have equivalent bounds.
PARAMETERS: --
KNOWN ISSUES: Only fuses adjacent loops. Computes conservative
statement dependencies.

Cloopnormalization
Converts arbitrary loops into well-behaved loops, i.e. loops for which the
induction variable starts at 0 (or any constant) and get incremented by one at
every iteration until the exit condition is met.
PARAMETERS: --

9

KNOWN ISSUES: Applicable to innermost loops. Expects loops of the form
for (i = Expr1 ; i < Expr2 ; i = i + Expr3). Cannot be
applied to function call arguments. Loop indices should be first copied to
temporary variables via explicit copies (see main() from suite/eda.c
example).

Clooppartialunrolling
Partially unroll a loop, to the extend provided by the unroll factor.
PARAMETERS: unroll
KNOWN ISSUES: Expects loops of the form for (i = 0; i < N; i =
i + 1), i.e. normalized loops. A single statement is expected within the loop
body.

Cloopreduction
This transformation is essentially the reverse of loop extension since it tries to
maximize the initial and minimize the final boundary values of the loop.
PARAMETERS: --
KNOWN ISSUES: Expects an if-condition of the form: i >= Expr1 && i
< Expr2.

Cloopreversal
Reverses the iteration direction of a loop.
PARAMETERS: --
KNOWN ISSUES: Applicable to innermost loops. Expects loops of the form:
for (i = Expr1; i [>=|>] Expr2 ; i = i - Expr3).

Cloopunswitching
Loop unswitching is applied when a loop body contains control code, which
evaluates a condition that is invariant. In this case the condition and
corresponding control code is transferred in the exterior of the loop.
PARAMETERS: --
KNOWN ISSUES: Applicable to innermost loops. Expects that a single
statement can be placed at the start the loop body and prior the if/if-else
statement.

Cstripmining
A restricted form of loop tiling that partitions the loop’s iteration into smaller
blocks. The following loop has been blocked with a block of size B.
PARAMETERS: tilesize
KNOWN ISSUES: Only applicable to innermost loops. Expects loops of the
form: for (i = Expr1; i < Expr2; i = i + Expr3).

4.3 Arithmetic-specific optimizations
The third category (arithmetic-specific optimizations - ASO) comprise of the follow-
ing:

10

Calgdivmod
Algebraic optimizations for div and mod.
PARAMETERS: --
KNOWN ISSUES: --

Calgdivmodspecial
Optimize special cases for power-of-two denominators.
PARAMETERS: --
KNOWN ISSUES: --

Clowlevelopt
C transformation to incorporate superoptimized short instruction sequences.
Currently this includes abs (absolute value), min (minimum of two quantities)
and max (maximum of two quantities).
PARAMETERS: --
KNOWN ISSUES: --

Ckdivopt
C transformation to incorporate calls to constant division routines.
PARAMETERS: --
KNOWN ISSUES: --

Ckmulopt
C transformation to incorporate calls to constant multiplication routines.
PARAMETERS: --
KNOWN ISSUES: --

Cestrinpolyopt
Polynomial evaluation optimization using Estrin’s scheme.
PARAMETERS: --
KNOWN ISSUES: Syntactic transformations for polynomials of up to the 8th
order.

Chornerpolyopt
Polynomial evaluation optimization using Horner’s scheme.
PARAMETERS: --
KNOWN ISSUES: Syntactic transformations for polynomials of up to the 8th
order.

5. Optimization flow
Fig. hlo-flow illustrates a possible optimization flow using TXL passes. Certain deci-
sions in this flow regard the ordering of transformations, since e.g. loop coalescing pre-
requisites loop normalization. It should be noted that strip mining eliminates chances
for loop unrolling, and should not be applied unconditionally to static loops. Further,

11

it is not meaningful to both use partial and full loop unrolling. User decisions also
involve the proper selection of tile size, vector size and unroll factor values by editing
hlo.sh. Since many of these transformations produce unoptimized expressions, a
code canonicalization pass is re-applied following most transformations.

Figure 1: A possible loop-level optimization flow.

6. hlo usage

6.1 Using hlo.sh
hlo is typically used via the hlo.sh bash script.

This script invokes a series of generally applicable code transformations. For exam-
ple, in order to transform user file myloops.c to myloops.opt.c, the user should
do the following:

$./hlo.sh myloops.c myloops.opt.c

When invoked properly, the hlo.sh will produce minimal diagnostic printout
such as:

:: Canonicalization Split local declarations While-to-for conversion Do-while-to-
for conversion Loop normalization Loop reduction Loop coalescing Statement vector-
ization

The user should define three basic parameters in the hlo.sh script:

∙ TILESIZE: size for the basic tile regarding strip mining (default: 8).

∙ UNROLLFACTOR: unroll factor for loop unrolling (default: 8).

∙ VECTSIZE: size of the vectored statements (default: 8).

The user is responsible for setting these parameters to meaningful values.

6.2 Without using hlo.sh
Access to a single code transformation can be performed into two ways: either through
the corresponding /hlo/bin/*.sh script or by directly accessing the transforma-
tion executable.

12

A) Example using the dedicated run scripts (assuming testing the /suite
files).

$ cd bin

$./csvect.sh 2 ../suite/eda.c ../log/eda.vectorized.c

B) Example directly using the C*.exe executables.

$ cd bin

$./Csvect2.exe ../suite/eda.c >& ../log/eda.vectorized.c

Also, you can use the “-help” switch to get context-specific help for each transfor-
mation:

$./cstripmining.sh -help

Certain executables have additional options. Code transformations without any
runtime parameter, require only specifying the input and output source files, and can
be accessed through the transform.sh script.

For instance, to apply for-to-while transformations, the transform.sh script
should be used as follows:

$ ${HLOTOP}/bin/transform.sh fortowhile
${HLOTOP}/suite/sumarray.c ${HLOTOP}/suite/sumarray.f2w.c

As a coding guideline proper bracing of for statements is suggested. for state-
ments that donnot use proper bracing may not be visible to certain transformations.

7. Running the basic tests
The basic tests under the /tests subdirectory can be exercised by running corre-
sponding test scripts:

$ cd $HLOTOP

$ cd scripts

$./run-ccanon.sh

$./run-csvect.sh

$./run-carrayflatten.sh

$...

Results are produced in the /log subdirectory and the following can be used:

$ cd ../log

$ cat canon1-out.c

to see the optimized version of canon1.c.
Use diff or similar tools to obtain the textual changes between source files:

13

$ diff tests/canon1.c log/canon1-out.c

8. Running the test suite
A more comprehensive test suite using PolyBench kernels is found in the /suite sub-
directory. These C source files can be exercised by running the top-level run-suite.sh
script.

$ cd $HLOTOP

$./run-suite.sh

This suite preprocesses, compiles and runs both the unoptimized (*-ref.c) and
optimized (*-opt.c) versions of each test suite file. Results of running the bench-
marks are logged to *-ref.txt and *-opt.txt, respectively. Any differences are
automatically logged to the standard output.

9. Tutorials

9.1 Enable full and disable partial loop unrolling
The user can always switch off specific transformations and rearrange the order of oth-
ers. To do this, first open hlo.sh with your favorite ASCII text editor (e.g. gedit,
geany would do).

Then, e.g. to disable partial loop unrolling, comment the following lines:

#echo "Partial loop unrolling"

#${HLOTOP}/bin/clooppartialunrolling.sh ${P_UNROLLFACTOR}
temp.1 temp.2

#cp -f temp.2 temp.1

To enable a specific transformation, e.g. full loop unrolling, uncomment the corre-
sponding lines:

#echo "Full loop unrolling"

${HLOTOP}/bin/cloopfullunrolling.sh ${P_UNROLLFACTOR}
temp.1 temp.2

cp -f temp.2 temp.1

9.2 Run an optimized gemm.c
We now have a modified hlo.sh script.

Let’s run all the necessary steps to transform, compile and execute gemm.c (as
gemm-opt.c).

Here it is assumed that the user already has a preprocessed gemm-ref.c in the
/hlo/suite dir, which we can compile:

14

http://sourceforge.net/projects/polybench/

$ gcc -DTEST -DPRINT -DDATA_TYPE=int
-DDATE_PRINTF_MODIFIER=\"%d-\" -Wall -O3 -o gemm-ref
gemm-ref.c

hlo.sh is invoked to optimize the preprocessed source:

$ ${HLOTOP}/hlo.sh gemm-ref.c gemm-opt.c

The optimized, source, gemm-opt.c is then compiled:

$ gcc -DTEST -DPRINT -DDATA_TYPE=int
-DDATE_PRINTF_MODIFIER=\"%d-\" -Wall -O3 -o gemm-opt
gemm-opt.c

Both ref and opt versions can be executed to produce printouts:

$ gemm-ref >& gemm-ref.txt

$ gemm-opt >& gemm-opt.txt

The generated text files can be compared using diff. Since diff does not report
any differences, the diagnostic printouts are identical:

$ ls -la gemm-*.txt

-rw-r--r--+ 1 nkavvadias None 712056 2012-06-07 22:35
gemm-opt.txt

-rw-r--r--+ 1 nkavvadias None 712056 2012-06-07 22:34
gemm-ref.txt

$ diff gemm-ref.txt gemm-opt.txt

The effect of loop coalescing is clearly visible in the following snippet as found in
lines 14-28 of gemm-opt.c.

int i_coalesced1;
for (i_coalesced1 = 0; i_coalesced1 < 65536;

i_coalesced1 = i_coalesced1 + 1) {
i = i_coalesced1 / 256, j = i_coalesced1 % 256;
A[i][j] = ((int) i * j) / 256;

}
int i_coalesced2;
for (i_coalesced2 = 0; i_coalesced2 < 65536;

i_coalesced2 = i_coalesced2 + 1) {
i = i_coalesced2 / 256, j = i_coalesced2 % 256;
B[i][j] = ((int) i * j + 1) / 256;

}
int i_coalesced3;
for (i_coalesced3 = 0; i_coalesced3 < 65536;

i_coalesced3 = i_coalesced3 + 1) {
i = i_coalesced3 / 256, j = i_coalesced3 % 256;
C[i][j] = ((int) i * j + 2) / 256;

}

15

The application of full loop unrolling is also visible, e.g. in lines 50-307 of gemm-opt.c.

{
C[i][j] += alpha * A[i][0] * B[0][j];
C[i][j] += alpha * A[i][1] * B[1][j];
C[i][j] += alpha * A[i][2] * B[2][j];
C[i][j] += alpha * A[i][3] * B[3][j];
C[i][j] += alpha * A[i][4] * B[4][j];
C[i][j] += alpha * A[i][5] * B[5][j];
C[i][j] += alpha * A[i][6] * B[6][j];
C[i][j] += alpha * A[i][7] * B[7][j];
.....................................

}

9.3 Changing the unroll factor
The unroll factor (defined as P_UNROLLFACTOR) in the hlo.sh script is meaningful
when using partial loop unrolling.

The user can edit hlo.sh to set the unroll factor to 4 by changing the correspond-
ing entry:

P_UNROLLFACTOR=4

The hlo.sh script is then edited again in order to disable full loop unrolling and
to enable partial loop unrolling.

Full loop unrolling
NOTE1: Either use full loop unrolling or partial loop unrolling
echo "Full loop unrolling"
${HLOTOP}/bin/transform.sh loopfullunrolling temp.1 temp.2
cp -f temp.2 temp.1
Partial loop unrolling
#echo "Partial loop unrolling"
#${HLOTOP}/bin/clooppartialunrolling.sh ${P_UNROLLFACTOR} temp.1 temp.2
#cp -f temp.2 temp.1
${HLOTOP}/bin/transform.sh canon temp.1 temp.2
cp -f temp.2 temp.1

The effect of partial loop unrolling with an unroll factor of 4 is visible in the fol-
lowing optimized main(argc,argv) function:

int main (int argc, char **argv) {
int i, j, k;
init_array ();
int i_coalesced4;
for (i_coalesced4 = 0; i_coalesced4 < 65536;

i_coalesced4 = i_coalesced4 + 1) {
i = i_coalesced4 / 256, j = i_coalesced4 % 256;
C[i][j] *= beta;
for (k = 0; k < 256 - (3);) {

C[i][j] += alpha * A[i][k] * B[k][j];

16

k = k + 1;
C[i][j] += alpha * A[i][k] * B[k][j];
k = k + 1;
C[i][j] += alpha * A[i][k] * B[k][j];
k = k + 1;
C[i][j] += alpha * A[i][k] * B[k][j];
k = k + 1;

}
for (; k < 256; k = k + 1) {

C[i][j] += alpha * A[i][k] * B[k][j];
}

}
print_array ();
return 0;

}

9.4 Use array flattening
The 3D-to-1D and 2D-to-1D array flattening optimizations are implemented by Carrayflatten.Txl
(TXL source for flattening array expressions) and flattenarrinit.l (lexer for
flattening initializations).

A simple test case for exercising this transformation can be found in /tests,
namely matrix1.c. To produce transformed code for this test, the corresponding
script from /scripts can be used:

./run-carrayflatten.sh

The optimized file is located in /hlo/log and is named matrix1-out.c.
For instance, array declarations and initializations in matrix1.c:

int karr[2][3]={{1,2,3},{4,5,6}};
int iarr[2][3];
double darr[II][JJ][KK];
char carr[II][2] = {{’A’, ’L’},{’M’, ’A’}};
float farr[3][5] = {{ 1.1, 1.2, 1.3, -1.4, -1.5},

{ 2.1, 2.2, -2.3, 2.4, 2.5},
{-3.1, -3.2, -3.3, 3.4, 3.5}};

int earr[2][2][2] = {{{1,2},{3,4}},{{5,6},{7,8}}};

are converted to:

int karr [2*3]={1,2,3,4,5,6};
int iarr [2*3];
double darr [II *JJ *KK];
char carr [II *2]={’A’,’L’,’M’,’A’};
float farr [3*5]={1.1,1.2,1.3,-1.4,-1.5,

2.1,2.2,-2.3,2.4,2.5,-3.1,-3.2,-3.3,3.4,3.5};
int earr [2*2*2]={1,2,3,4,5,6,7,8};

The following two loop nests expose various expressions using 2D and 3D arrays:

17

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {

iarr[i][j] = add(karr[i][j], j);
}

}

for (i = 0; i < II; i++) {
for (j = 0; j < JJ; j++) {

for (k = 0; k < KK; k++) {
darr[i][j][k] = (i + j + j + 2.0) / 3.0;

}
}

}

The corresponding transformed nests are as follows:

for (i=0; i<2; i++){
for (j=0; j<3; j++){

iarr [i*3+j] = add (karr [i*3+j], j);
}

}

for (i=0; i<II ; i++){
for (j=0; j<JJ ; j++){

for (k=0; k<KK ; k++){
darr [i*JJ*KK + j*KK + k]=(i+j+j+2.0)/3.0;

}
}

}

9.5 Apply algebraic identities for modulo optimization
Transformation passes Calgdivmod and Calgdivmodspecial deal with opti-
mizing expressions involving modulo computations.

Calgdivmod applies a number of algebraic simplifications, e.g. for replacing
constants moduli with smaller ones.

The test case algdivmod1.c exercises all currently implemented identities. To
produce transformed code for these tests, the corresponding scripts from /scripts
can be used:

./run-calgdivmod.sh

./run-calgdivmodspecial.sh

As an example, the following expressions:

a = ((f1) * x + (f2)) % x;
b = ((f1) * x + (f2)) / x;
a = (2*(f1) + 3*(f2)) % 5;
b = (2*(f1) + 3*(f2)) / 5;
a = (2*(f1)*x + (f2)) % (5*x);
b = (2*(f1)*x + (f2)) / (5*x);

18

are converted to:

a=((f2)%x);
b=((f1)+(f2)/x);
a=((2%5)*(f1)+(3%5)*(f2))%5;
b=((2%5)*(f1)+(3%5)*(f2))/5+(2/5)*(f1)+(3/5)*(f2);
a=((2%5)*(f1)*x+(f2))%(5%x);
b=((2%5)*(f1)*x+(f2))/(5*x)+(2/5)*(f1);

Transformation Calgdivmodspecial produces optimized code for specific cases
of division and modulo by constant, specifically for powers-of-2. In this case, the fol-
lowing assignments:

a = (f1+1) / 4 + 1;
b = (f2+2) % 4 + 0;
a = (f1) / 16777216 + 1;
b = (f2) % 16777216 + 0;
aa = (unsigned long long int)(f1+1) / 9223372036854775808 + 1;
bb = (unsigned long long int)(f2+2) % 9223372036854775808 + 0;

are converted to:

a=SHL(f1+1,2)+1;
b=AND(f2+2,3)+0;
a=SHL(f1,24)+1;
b=AND(f2,16777215)+0;
aa=(unsigned long long int)(f1+1)/9223372036854775808+1;
bb=(unsigned long long int)(f2+2)%9223372036854775808+0;

The resulting code uses macro-expansions for computing the logical AND and log-
ical left shift (SHL). These macros are defined in /hlo/src/txl/macros.h.

9.6 Low-level superoptimizations
Superoptimization basically involves the generation of optimal code sequences (usu-
ally loop-free) based on exhaustive search of the solution space. While superoptimiza-
tion itself presents super-exponential time complexity, optimized sequences for short
frequently-used straight line code segments are known.

Clowlevelopt replaces occurences of arithmetic expressions and/or function
calls for frequently-used computations such as absolute value, minimum and maximum
by corresponding superoptimized sequences.

To produce transformed code for the included test cases, use the following:

./run-clowlevelopt.sh

The test cases lowlevelopt1.c and lowlevelopt2.c exercise various ex-
pressions involving abs, min and max. In their initial, pre-optimized form, a sample
set of assignments is as follows:

int a, a1, a2;
int b, b1, b2;
int c, c1, c2;

19

int d, d1, d2;
long long int aa, aa1, aa2;
long long int bb, bb1, bb2;
long long int dd, dd1, dd2;
...
c = abs(a);
d = min(a, b);
dd2 = max(aa2, bb2);

are converted to:

signed int a, b;
signed int c, c_t2, c_t3;
signed int a1, b1;
signed int c1, c1_t2, c1_t3, c1_t4;
signed long long int aa2, bb2;
signed long long int cc2, cc2_t2, cc2_t3, cc2_t4;

c_t2=(a)>>31;
c_t3=(a)^c_t2;
c=c_t3-c_t2;

c1_t2=a1^b1;
c1_t3=-((u32)a1<=(u32)b1);
c1_t4=c1_t2&c1_t3;
c1=c1_t4^b1;

cc2_t2=aa2^bb2;
cc2_t3=-((u64)aa2>=(u64)bb2);
cc2_t4=cc2_t2&cc2_t3;
cc2=cc2_t4^bb2;

In this version, additive, subtractive, multiplicative and other complex expressions
as function arguments are not supported for optimization.

9.7 Constant multiplication optimization
Ckmulopt replaces multiplications by constant by calls to corresponding multiplier-
less routines and incorporates the routines themselves into the resulting transformed
code.

To produce transformed code for the included test case named kmuldiv1.c, the
corresponding script can be used:

./run-ckmulopt.sh

As of current, three-address code like assignments can be transformed, as can be
seen below. First, the initial code segment is shown:

int func1(int);
int func2(void);

20

int main(int argc, char *argv[]) {
int a, b, c, d, e;
a = atoi(argv[1]);
b = a * 3;
c = b / 11;
d = func1(c) * 17;
e = d + func2() / 7;
return (c+d+e);}

The resulting code is as follows:

int func1(int);
int func2(void);

int main(int argc,char*argv[]){
signed int a, b, c, d, e;
a=atoi (argv[1]);
b=kmul_s32_p_3 (a);
c=b/11;
d=func1 (c)*17;
e=d+func2 ()/7;
return(c+d+e);}

signed int kmul_s32_p_3(signed int x){
signed int t0, t1, t2;
signed int y;
t0=x;
t1=t0<<1;
t2=t1+x;
y=t2;
return(y);}

9.8 Constant division optimization
Ckdivopt replaces divisions by constant by calls to corresponding divisionless rou-
tines and incorporates the routines themselves into the resulting transformed code.

To produce transformed code for the included test case named kmuldiv1.c, the
corresponding script can be used from within /hlo/scripts:

./run-ckdivopt.sh

As of current, three-address code like assignments can be transformed, as can be
seen below.

For the same initial code segment as in the case of constant multiplication opti-
mization, the following code is produced:

int func1(int);
int func2(void);

int main(int argc,char*argv[]){
signed int a, b, c, d, e;

21

a=atoi (argv[1]);
b=a*3;
c=kdiv_s32_p_11 (b);
d=func1 (c)*17;
e=d+func2 ()/7;
return(c+d+e);}

signed int kdiv_s32_p_11(signed int n){
signed int q,M=780903145,c;
signed long long int t,u,v;
t=(signed long long int)M*(signed long long int)n;
q=t>>32;
q=q>>1;
c=n>>31;
q=q+c;
return(q);}

9.9 Optimization by Horner scheme
Syntactic transformations of polynomial expressions to optimized forms are still work
in progress. However, Chornerpolyopt applies such transformations to explicit
polynomials, up to the 8th degree. This covers must usual cases of polynomial ex-
pressions, as in computer graphics (where quartic and quintic polynomials are often
used).

To produce transformed code for the included test case named polyopt1.c, the
corresponding script can be used from within /hlo/scripts:

./run-chornerpolyopt.sh

First, the initial code segment is shown:

f1 = 1 + x;
f2 = 1 + 2*x + x*x;
f3 = 1 + 2*x + x*x + 3*x*x*x;
f4 = 5 + 2*x + x*x + 3*x*x*x - 4*x*x*x*x;
f5 = 0 + 2*x + x*x - 11*x*x*x + x*x*x*x - x*x*x*x*x;
...

The resulting code is as follows:

f1=1+x;
f2=1+x*(2+x);
f3=1+x*(2+x*(1+x*(3)));
f4=5+x*(2+x*(1+x*(3-x*(4))));
f5=0+x*(2+x*(1-x*(11+x*(1-x))));

10. Known problems and issues
There are certain known problems regarding this release of hlo. For most cases, a
solution will be developed in the immediate future.

Known issues:

22

1. Loop fusion requires that the user checks that data dependencies are re-
spected.

2. Loop unswitching is currently being fixed.

3. Certain transformations generate variables in local C scope. This is ac-
ceptable C99 practice, but is not supported by some C89 compilers, such
as the HP VEX compiler. This means that e.g. strip mining should be
avoid for VEX compilation.

4. Comments are not maintained through transformation passes.

PROPOSED SOLUTION: Reworking the GnuC grammar to a robust grammar that
allows comments as unknown/unparseable statements.

5. Loop unrolling (partial, full) works on single statement loop bodies.

6. hlo follows the C.Grm GNU C grammar with minor changes. In case of
user code that appears non-compliant, please check first against the plain
TXL-based parser, e.g.:

$ Cparse.exe test.c

7. It is suggested that proper bracing is used for while, for and do-while
statements.

8. Macros from macros.h are not yet automatically incorporated in result-
ing files.

9. Clowlevelopt.Txl needs to be expanded for taking account further
superoptimized code sequences.

10. Clowlevelopt.Txl does not yet optimize functions with complex ex-
pressions as function arguments.

11. Ckmulopt and Ckdivopt expect operations by constant in a three-
address code like form.

11. Contact
You may contact me for further questions/suggestions/corrections at:

Nikolaos Kavvadias <nkavv@uop.gr>
<nikolaos.kavvadias@gmail.com>

http://www.nkavvadias.com
Department of Computer Science and Technology
University of Peloponnese
Tripoli, Greece

23

mailto:nkavv@uop.gr
mailto:nikolaos.kavvadias@gmail.com
http://www.nkavvadias.com

	1. Introduction
	1.1. Why TXL?

	2. Obtaining and setting up hlo
	2.1 Obtaining hlo
	2.2 Setting up optional tools
	2.3 hlo setup
	2.4. Building from sources

	3. File listing
	4. Supported transformations
	4.1 Generic restructuring transformations
	4.2 Loop-specific optimizations
	4.3 Arithmetic-specific optimizations

	5. Optimization flow
	6. hlo usage
	6.1 Using hlo.sh
	6.2 Without using hlo.sh

	7. Running the basic tests
	8. Running the test suite
	9. Tutorials
	9.1 Enable full and disable partial loop unrolling
	9.2 Run an optimized gemm.c
	9.3 Changing the unroll factor
	9.4 Use array flattening
	9.5 Apply algebraic identities for modulo optimization
	9.6 Low-level superoptimizations
	9.7 Constant multiplication optimization
	9.8 Constant division optimization
	9.9 Optimization by Horner scheme

	10. Known problems and issues
	11. Contact

