pde2hw user manual

Title	pde2hw (FPGA-based hardware prototypes in Processing)
Author	Nikolaos Kavvadias 2014
Contact	nikos@nkavvadias.com
Website	http://www.nkavvadias.com
Release Date	15 October 2014
Version	0.0.0
Rev. history	
v0.0.0	2014-10-15
	First public release containing three hardware prototypes
	(gensca, imgsynth, rugca).

1. Introduction

pde2hw is a collection of standalone hardware prototypes that have been written in the Processing programming language (http://www.processing.org). The Processing codes that comprise this collection have been verified in FPGA-based hardware by using a high-level synthesis approach from ANSI/ISO C. The HLS tool that was used for the final implementation is HercuLeS: http://www.nkavvadias.com/hercules/

 ${\tt pde2hw}$ comprises of the following applications:

- gensca: a 2D Generations cellular automaton (http://www.mirekw.com/ca/rullex_gene.html)
- imgsynth: an image synthesis application that does not use intermediate memory and is used for visualizing pixel generation functions of the form z = f(x, y)
- rugca: a 2D cellular automaton with 256 states using a rug-like rule (http://www.mirekw.com/ca/rullex_udll.html).

It should be mentioned that while the Processing prototypes are meant to serve as early-stage experiments prior dedicating to hardware, the first three cases (gensca, imgsynth, rugca) are post-mortem prototypes, i.e. the Processing codes had been developed after the FPGA implementations (which were synthesized to VHDL using HercuLeS).

2. File listing

The pde2hw distribution includes the following files:

/pde2hw	Top-level directory
AUTHORS	List of pde2hw authors.
LICENSE	The modified BSD license governs pde2hw.
README.html	HTML version of README.
README.pdf	PDF version of README.
README.rst	This file.
rst2docs.sh	Bash script for generating the HTML and PDF versions.
VERSION	Current version of the project sources.
/src/gensca	Processing code for gensca
gensca.pde	The gensca application.
/src/imgsynth	Processing code for imgsynth
imgsynth.pde	The imgsynth application.
/src/rugca	Processing code for rugca
rugca.pde	The rugca application.

3. Description

3.1 gensca

gensca is a generic implementation of the Generations automaton (2D, outer totalistic with decay).

Generations rules are defined in the "S/B/C" form, where:

- S defines counts of alive neighbors necessary for a cell to survive,
- B defines counts of alive neighbors necessary for a cell to be born.
- C defines the count of states cells can have (including 0 state).

3.2 imgsynth

imgsynth is a static image synthesis engine for testing various algebraic effects.

The following triplets of two-variable functions which follow the form $R_f(x, y)$, $G_f(x, y)$, $B_f(x, y)$ for each color component R, G, B have been tested:

GREY_XOR: $R_f(x,y) = x \wedge y$, $G_f(x,y) = x \wedge y$, $B_f(x,y) = x \wedge y$ **RGB_XOR:** $R_f(x,y) = x$, $G_f(x,y) = y$, $B_f(x,y) = x \wedge y$ **RGB_ADD:** $R_f(x,y) = x$, $G_f(x,y) = x + y$, $B_f(x,y) = x + y$ **GREY_MUL:** $R_f(x,y) = x * y$, $G_f(x,y) = x * y$, $B_f(x,y) = x * y$ **RGB_MUL:** $R_f(x,y) = x$, $G_f(x,y) = x * y$, $B_f(x,y) = x * y$ **SEPIA:** $R_f(x,y) = 224$, $G_f(x,y) = 132$, $B_f(x,y) = 40$ **GRAD_RG:** $R_f(x,y) = x$, $G_f(x,y) = y$, $B_f(x,y) = 0$ **GRAD_RB:** $R_f(x,y) = x$, $G_f(x,y) = 0$, $B_f(x,y) = y$ **GREY_ADDSQ:** $R_f(x,y) = x^*x+y^*y$, $G_f(x,y) = x^*x+y^*y$, $B_f(x,y) = x^*x+y^*y$ **GRAD_GB:** $R_f(x,y) = 0$, $G_f(x,y) = x$, $B_f(x,y) = y$ **ADDSUBXOR:** $R_f(x,y) = x + y$, $G_f(x,y) = x - y$, $B_f(x,y) = x^*y$ **GREY_AVG:** $R_f(x,y) = (x+y) \gg 1$, $G_f(x,y) = (x+y) \gg 1$, $B_f(x,y) = (x+y) \gg 1$ **GREY_SUBSQ:** $R_f(x,y) = x^*x-y^*y$, $G_f(x,y) = x^*x-y^*y$, $B_f(x,y) = x^*x-y^*y$ **RGB_SUBSQ:** $R_f(x,y) = x$, $G_f(x,y) = x^*x-y^*y$, $B_f(x,y) = x^*x-y^*y$ **GREY_MAX:** $R_f(x,y) = MAX(x,y)$, $G_f(x,y) = MAX(x,y)$, $B_f(x,y) = MAX(x,y)$ **GREY_MIN:** $R_f(x,y) = MIN(x,y)$, $G_f(x,y) = MIN(x,y)$, $B_f(x,y) = MIN(x,y)$

to which optionals masks can be applied.

3.3 rugca

rugca is the Generic implementation of a rug-like automaton (2D).

Rug rules are averaging rules using the full range of 256 possible states. To update itself in a Rug rule, every cell takes four steps.

- 1) Every cell calculates the sum of its 8-neighborhood states.
- 2) Every cell calculates the average neighbor state by dividing the sum by 8 and throwing out any remainder.
- 3) Every cell computes its new state by adding an increment (incr) to the average neighbour state.
- 4) As a final step, new state is taken modulo 256.

4. pde2hw usage

In order to execute the Processing applications, you have to invoke the Processing environment/IDE and then press the Run button with the application loaded (and visible in the editor).

Alternatively you can simply double-click on the \star .pde file that contains the application (Windows).

5. Prerequisites

• Processing IDE (http://www.processing.org)

The applications have been tested with version 2.2.1 of the Processing environment on Windows.