
pde2hw user manual

Title pde2hw (FPGA-based hardware prototypes in Processing)
Author Nikolaos Kavvadias 2014
Contact nikos@nkavvadias.com
Website http://www.nkavvadias.com
Release Date 15 October 2014
Version 0.0.0
Rev. history
v0.0.0 2014-10-15

First public release containing three hardware prototypes
(gensca, imgsynth, rugca).

1. Introduction
pde2hw is a collection of standalone hardware prototypes that have been written in the
Processing programming language (http://www.processing.org). The Processing codes
that comprise this collection have been verified in FPGA-based hardware by using a
high-level synthesis approach from ANSI/ISO C. The HLS tool that was used for the
final implementation is HercuLeS: http://www.nkavvadias.com/hercules/

pde2hw comprises of the following applications:

∙ gensca: a 2D Generations cellular automaton (http://www.mirekw.com/ca/rullex_
gene.html)

∙ imgsynth: an image synthesis application that does not use intermediate mem-
ory and is used for visualizing pixel generation functions of the form z = f(x,y)

∙ rugca: a 2D cellular automaton with 256 states using a rug-like rule (http:
//www.mirekw.com/ca/rullex_udll.html).

It should be mentioned that while the Processing prototypes are meant to serve as
early-stage experiments prior dedicating to hardware, the first three cases (gensca,
imgsynth, rugca) are post-mortem prototypes, i.e. the Processing codes had been
developed after the FPGA implementations (which were synthesized to VHDL using
HercuLeS).

2. File listing
The pde2hw distribution includes the following files:

1

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com
http://www.processing.org
http://www.nkavvadias.com/hercules/
http://www.mirekw.com/ca/rullex_gene.html
http://www.mirekw.com/ca/rullex_gene.html
http://www.mirekw.com/ca/rullex_udll.html
http://www.mirekw.com/ca/rullex_udll.html
http://www.nkavvadias.com/hercules/


/pde2hw Top-level directory
AUTHORS List of pde2hw authors.
LICENSE The modified BSD license governs pde2hw.
README.html HTML version of README.
README.pdf PDF version of README.
README.rst This file.
rst2docs.sh Bash script for generating the HTML and PDF versions.
VERSION Current version of the project sources.
/src/gensca Processing code for gensca
gensca.pde The gensca application.
/src/imgsynth Processing code for imgsynth
imgsynth.pde The imgsynth application.
/src/rugca Processing code for rugca
rugca.pde The rugca application.

3. Description

3.1 gensca
gensca is a generic implementation of the Generations automaton (2D, outer totalistic
with decay).

Generations rules are defined in the "S/B/C" form, where:

∙ S - defines counts of alive neighbors necessary for a cell to survive,

∙ B - defines counts of alive neighbors necessary for a cell to be born.

∙ C - defines the count of states cells can have (including 0 state).

3.2 imgsynth
imgsynth is a static image synthesis engine for testing various algebraic effects.

The following triplets of two-variable functions which follow the form R_f(x,y),
G_f(x,y), B_f(x,y) for each color component R, G, B have been tested:

GREY_XOR: R_f(x,y) = x ^ y, G_f(x,y) = x ^ y, B_f(x,y) = x ^ y

RGB_XOR: R_f(x,y) = x, G_f(x,y) = y, B_f(x,y) = x ^ y

RGB_ADD: R_f(x,y) = x, G_f(x,y) = x + y, B_f(x,y) = x + y

GREY_MUL: R_f(x,y) = x * y, G_f(x,y) = x * y, B_f(x,y) = x * y

RGB_MUL: R_f(x,y) = x, G_f(x,y) = x * y, B_f(x,y) = x * y

SEPIA: R_f(x,y) = 224, G_f(x,y) = 132, B_f(x,y) = 40

GRAD_RG: R_f(x,y) = x, G_f(x,y) = y, B_f(x,y) = 0

GRAD_RB: R_f(x,y) = x, G_f(x,y) = 0, B_f(x,y) = y

2



GREY_ADDSQ: R_f(x,y) = x*x+y*y, G_f(x,y) = x*x+y*y, B_f(x,y) = x*x+y*y

GRAD_GB: R_f(x,y) = 0, G_f(x,y) = x, B_f(x,y) = y

ADDSUBXOR: R_f(x,y) = x + y, G_f(x,y) = x - y, B_f(x,y) = x ^ y

GREY_AVG: R_f(x,y) = (x+y)»1, G_f(x,y) = (x+y)»1, B_f(x,y) = (x+y)»1

GREY_SUBSQ: R_f(x,y) = x*x-y*y, G_f(x,y) = x*x-y*y, B_f(x,y) = x*x-y*y

RGB_SUBSQ: R_f(x,y) = x, G_f(x,y) = x*x-y*y, B_f(x,y) = x*x-y*y

GREY_MAX: R_f(x,y) = MAX(x,y), G_f(x,y) = MAX(x,y), B_f(x,y) = MAX(x,y)

GREY_MIN: R_f(x,y) = MIN(x,y), G_f(x,y) = MIN(x,y), B_f(x,y) = MIN(x,y)

to which optionals masks can be applied.

3.3 rugca
rugca is the Generic implementation of a rug-like automaton (2D).

Rug rules are averaging rules using the full range of 256 possible states. To update
itself in a Rug rule, every cell takes four steps.

1) Every cell calculates the sum of its 8-neighborhood states.

2) Every cell calculates the average neighbor state by dividing the sum by 8
and throwing out any remainder.

3) Every cell computes its new state by adding an increment (incr) to the
average neighbour state.

4) As a final step, new state is taken modulo 256.

4. pde2hw usage
In order to execute the Processing applications, you have to invoke the Processing en-
vironment/IDE and then press the Run button with the application loaded (and visible
in the editor).

Alternatively you can simply double-click on the *.pde file that contains the ap-
plication (Windows).

5. Prerequisites
∙ Processing IDE (http://www.processing.org)

The applications have been tested with version 2.2.1 of the Processing environ-
ment on Windows.

3

http://www.processing.org

