
tcfggen user manual

Title tcfggen (Task control flow graph extraction MachSUIF
pass)

Author Nikolaos Kavvadias 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013, 2014

Contact nikos@nkavvadias.com
Website http://www.nkavvadias.com
Release Date 14 October 2014
Version 1.1.0
Rev. history
v1.1.0 2014-10-14

Updated header comments in all source files. Added File
Listing section in README; added AUTHORS. Updated
for Github.

v1.0.0 2014-02-24
Changed documentation format to RestructuredText. Added
ChangeLog in separate file.

v0.2.0 2006-06-27
Fixed problem with parsing input arguments. All options:
"-lut","-vcg","-fsm","-cac" should work now.

v0.1.0 2006-06-07
Initial release. Code clean-up, added code generation op-
tions.

1. Introduction
tcfggen is an analysis pass built to be used with the SUIF2/MachSUIF2 compiler
infrastructure. tcfggen performs (natural) loop analysis in order tomap the control
flow of a given optimization unit (i.e. a procedure in the input program) to its task
control flow graph (TCFG). It is also used to pass the static information for the loops
in the given procedure to the subsequent stage(s) in the form of pseudo-instructions.
These pseudo-instructions pass information regarding:

a) the task transitions

b) the points for task entry and task exit

c) the loop parameters (loop bounds and stride) and the basic induction reg-
ister

1

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com

d) which instructions should be removed for ZOLC execution

This pass works for the SUIFrm instruction set and has been tested with MachSUIF
2.02.07.15.

2. File listing
The tcfggen distribution includes the following files:

/tcfggen Top-level directory
AUTHORS List of tcfggen authors.
LICENSE The modified BSD license governs tcfggen.
README.html HTML version of README.
README.pdf PDF version of README.
README.rst This file.
VERSION Current version of the project sources.
lcugen.cpp Originally part of the loop count unit generator tool

(lcugen) it used here for making a single pass on the
natural loop analysis results in order to assign proper
addresses to the data processing tasks (DPTs) of the al-
gorithm under analysis.

lcugen.h C++ header file containing declarations and prototypes
for the above.

rst2docs.sh Bash script for generating the HTML and PDF versions
of the documentation (README).

tcfggen.cpp Implementation of the tcfggen analysis pass.
tcfggen.h C++ header file containing declarations and prototypes

for the above.
suif_main.cpp Entry point for building the standalone program

do_tcfggen that implements the pass.
suif_pass.cpp Define the SUIF pass built as the dynamically loadable

library libtcfggen.so.
suif_main.h C++ header file for the above.

3. Technical information
This pass uses the machine, cfg and cfa libraries of MachSUIF. It also depends
on the suifrm backend. It first generates the natural loopanalysis report for the
procedure. If formatted for text output, this information would be as follows:

Loop info:
node depth begin end exit
int: int Y/N Y/N Y/N
...................................

where:

2

-node the number of the corresponding basic block (in-
teger)

-depth the loop nesting depth (integer)

-begin a boolean flag to report if a loop begins at the
specified node

-end a boolean flag to report if a loop ends at the spec-
ified node

-exit a boolean flag to report if an exit from the loop is
possible from that node.

Based on the loop analysis results, four different types of pseudo-instructions are
generated. Their assembly formats are shown below:

ldst <current-taskid>, <next-taskid>, <next-ttsel>, <next-loop_a>
dpti <id>, <first-bb>, <last-bb>
loop <loop_a>, <rindex>, <initial>, <step>, <final>
overhead <state>

An LDST instruction incorporates all the information needed for creating a task
selection LUT entry: for a given task encoding (current-taskid), the succeeding
task (next-taskid), its type (next-ttsel) and loop address (next-loop_a)
are given. These pseudos are attached to the last assembly instruction in the task.

DPTI instructions denote the first (first-bb) and last basic block (last-bb)
of a task (its enumeration given by id). This pseudo is attached to the first instruction
of this data-processing task.

A LOOP provides a given loop address (loop_a), the actual loop index register
(rindex) and the loop parameters (initial, step, final). This pseudo is at-
tached to the last instruction in the basic block (typically a BLT = branch if less than).

An OVERHEAD marks its following non-pseudo instruction whether it must be
kept (state=0 which is the default), replaced by a no-operation (state=1), or en-
tirely removed (state=2). These pseudos are attached to the specific instructions.

4. Installation
Unpack the tcfggen archive wherever you like, e.g. in $MACHSUIFHOME/cfa/tcfggen.
You don’t need to modify anything in the Makefile, if you have a working MachSUIF
2 installation.

The program binary (do_tcfggen) will be installed at $NCIHOME/bin and the
shared library (libtcfggen.so) at $NCIHOME/solib, where NCIHOME is the
SUIF 2 top-level directory.

5. Usage details
The pass accepts an input file in CFG form to operate. The output file is a SUIF CFG
containing the input CFG with the generated pseudo-instructions.

Usage synopsys:

3

$ do_tcfggen [options] input.cfg output.cfg

where options can be one (or more) of the following:

-proc <opt-unit> specify the name of the procedure to perform TCFG construction
and generation of pseudo-instructions

-lut generate the VHDL source for the task selection LUT

-vcg visualize the TCFG in VCG format

-fsm generate the VHDL source for an FSM implementation of the task selection unit

-cac generate C simulation code for the initialization of the task selection unit.

6. Known limitations
1. MachSUIF (2.02.07.15) only includes natural loop analysis.

2. Currently, there is support for static loops only.

3. An ’optimization unit’ can only be a single function or procedure.

4

