
xmodz user manual

Title xmodz (IP core collection)
Author Nikolaos Kavvadias (C) 2012, 2013
Contact nikos@nkavvadias.com
Website http://www.nkavvadias.com
Release Date 03 June 2013
Version 1.0.0
Rev. history
v1.0.0 03-06-2013

First public release.

1. Introduction
The xmodz IP collection provides fast hardware implementations for the x mod z
computation on integers. The collection comprises of two distinct IP modules, modk
for modulo by a fixed integer constant and modv for modulo by an integer variable.

The algorithm used for implementing x mod z is based on modulo reduction
where at each stage, the magnitude of x is reduced, but the residue remains the same.

Modulo reduction is widely used in cryptographically-secure systems, for fast pseudo-
random number generation and is suitable for RNS (Residue Number System) applica-
tions.

This implementation has been inspired by this published work:
J. T. Butler and T. Sasao, “Fast hardware computation of x mod z,” Proceedings

of the 18th Reconfigurable Architectures Workshop (RAW 2011), May 16-17, 2011,
Anchorage, Alaska, USA.

The following sections provide details on the contents of the delivered IP cores,
which include all necessary materials such as source files and scripts for RTL simula-
tion and logic synthesis.

Reference documentation for XMODZ can be found in the /doc subdirectory in

1

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com

plain text, HTML and PDF form.

2. Functional description
XMODZ is implemented as fully-parameterized RTL VHDL using a clean process-
based style with combinational-only and sequential-only processes. The following ta-
ble summarizes the parameters (as VHDL generics) that are supported by each design.

Design Parameter Description
modk, modv MODE Choose between a fully-pipelined design

(REGISTERED) and a combinational one
(COMBINATIONAL).

modk, modv N Data bitwidth.
modk K Constant value for z in x mod z.

The registered designs have a throughput of one clock cycle, which means that a
new result can be computed every single clock cycle. The same applies for the fully
combinational designs. In terms of latency, the modv design has a latency of N+2
while the modk design has a latency of N-M, where M is the number of bits required for
representing the constant value K. Both registered and combinational designs provide
a fully-synchronous interface by registering their outputs.

The following table provides an overview of the throughput and latency metrics for
all supported modes of the modk and modv designs.

Design Mode Latency Throughput
modv COMBINATIONAL 1 1
modv REGISTERED N+2 1
modk COMBINATIONAL 1 1
modk REGISTERED N-M+2 1

The interface block diagrams for both designs are shown below. Each core uses a
single external clock source, connected to signal CLK. It can be asynchronously reset
with the active high signal RESET. Signal START activates the core. Data inputs X
and Z (the latter only in the modv case) are the numerator and denominator involved
in the modulus operation. Data output Y is the outcome of this computation. DONE
signifies the end of the current computation. READY indicates that the core can accept
new input.

Figure 1: modv I/O interface.

2

Figure 2: modk I/O interface.

3. File listing
The XMODZ distribution includes the following files.

/xmodz Top-level directory
/bench/vhdl Benchmarks VHDL directory
modk_ieee_tb.vhd
modv_ieee_tb.vhd
std_logic_textio.vhd

Self-checking testbench for the modk IP.
Self-checking testbench for the modv IP.
Draft version of the std_logic_textio package.

/common/fgmp Source code directory for the free GMP library
fgmp.c
fgmp.h
Makefile
notes

ANSI C implementation of the free GMP library API.
Header file for the free GMP library.
Makefile for building the libfgmp.a static library.
Documentation for the free GMP library.

/doc Documentation directory
AUTHORS
LICENSE
xmodz-modk-if.png
xmodz-modv-if.png
xmodz-pb.pdf
README
README.html
README.pdf
VERSION

List of authors.
End-user license agreement for using xmodz.
PNG image illustrating the modk IP I/O interface.
PNG image illustrating the modv IP I/O interface.
Product brief (brochure) for the XMODZ IP cores.
This file.
HTML version of README.
PDF version of README.
Current version of the XMODZ IP cores.

/rtl/vhdl RTL source code directory for the IP core
modk_ieee.vhd
modv_ieee.vhd

RTL VHDL design file for the modk IP core.
RTL VHDL design file for the modv IP core.

/sim/rtl_sim RTL simulation files directory
/sim/rtl_sim/bin RTL simulation scripts directory
modk.do
modk.mk
modv.do
modv.mk

do script for simulating modk with Modelsim.
GNU Makefile for simulating modk with GHDL.
do script for simulating modv with Modelsim.
GNU Makefile for simulating modv with GHDL.

/sim/rtl_sim/out Dumps and other useful output from RTL simulation

3

modk_results_all.txt
modv_results_all.txt

Output from multiple RTL simulations of modk.
Output from multiple RTL simulations of modv.

/sim/rtl_sim/run Files for running RTL simulations
ghdl.sh
mti.sh
run-sim-mod[k|v].sh

Bash script for running a single GHDL simulation.
Bash script for running a single Modelsim simulation.
Bash script for running multiple simulations of
modk/modv with either GHDL or Modelsim.

/sim/rtl_sim/src Various source files for running RTL simulations
chg-generics-modk.pl Perl script for producing a version of modk as

modk.vhd with updated generics.
chg-generics-modk.pl Perl script for producing a version of modv as

modv.vhd with updated generics.
/sw Software utilities
Makefile
modk.c
modv.c

GNU Makefile for building modk.exe/modv.exe.
Reference I/O data generator for modk.
Reference I/O data generator for modv.

/syn/xise Synthesis files for use with Xilinx ISE
/syn/xise/bin Synthesis scripts directory
xst.mk Standard Makefile for command-line usage of ISE.
/syn/rtl_sim/run Files for running synthesis
run-xst-modk.sh
run-xst-modv.sh

Bash shell script for synthesizing modk with ISE.
Bash shell script for synthesizing modv with ISE.

4. Simulation
The XMODZ IP cores distribution supports both GHDL and Mentor Modelsim simu-
lation.

4.1. GHDL
For running the GHDL simulation, change directory to the /sim/rtl_sim/run
subdirectory:

$ cd $XMODZ_HOME/sim/rtl_sim/run

assuming XMODZ_HOME is the directory where the top-level /xmodz is found.
Then, the corresponding shell script is executed, e.g. for the modv design:

$./run-sim-modv.sh ghdl

The simulation produces two files, a VCD (waveform) dump named modv.vcd
and the diagnostic text file modk_results.txt which are automatically copied
to the /sim/rtl_sim/out subdirectory. The generated result files from multiple
VHDL simulations are concatenated into a master diagnostics file named modv_results_all.txt.

The modk design can be simulated in the same way, if you replace modk for modv
in the instructions above.

4

4.2. Modelsim
For running the Modelsim simulation, the corresponding shell script is executed from
the /sim/rtl_sim/run subdirectory:

$./run-sim-modv.sh mti

As in the GHDL case, the VCD dump and the diagnostic text file are produced.
Again, the modk design can be simulated in the same way, if you replace modk for

modv in the instructions above.

5. Synthesis
The XMODZ IP cores distribution includes scripts for logic synthesis automation sup-
porting Xilinx ISE. The corresponding synthesis script can be edited in order to specify
the following for adapting to the user’s setup:

∙ XDIR: the path to the /bin subdirectory of the Xilinx ISE/XST installation
where the xst.exe executable is placed

∙ arch: specific FPGA architecture (device family) to be used for synthesis

∙ part: specific FPGA part (device) to be used for synthesis

5.1. Running the synthesis script
For running the Xilinx ISE synthesis tool, change directory to the /syn/xise/run
subdirectory:

$ cd $XMODZ_HOME/syn/xise/run

and execute the corresponding script (for synthesizing modv):

$./run-xst-modv.sh

The synthesis procedure invokes several Xilinx ISE command-line tools for logic
synthesis as described in the corresponding Makefile, found in the the /syn/xise/bin
subdirectory.

Typically, this process includes the following:

∙ Generation of the *.xst synthesis script file.

∙ Generation of the *.ngc gate-level netlist file in NGC format.

∙ Building the corresponding *.ngd file.

∙ Performing mapping using map which generates the corresponding *.ncd file.

∙ Place-and-routing using par which updates the corresponding *.ncd file.

∙ Tracing critical paths using trce for reoptimizing the *.ncd file.

∙ Bitstream generation (*.bit) using bitgen, however with unused pins.

5

Finally, the modv.bit bitstream file is produced.
The same process can be applied for synthesizing the modk design as well.

6. Reference software application
The reference C applications for modk and modv are available in the /sw subdirectory.

For the case of modk the C application is built with the help of the associated GNU
Makefile by the corresponding simulation script as follows:

make K=${cnst} NUMBITS=${bw} modk.exe

where cnst is an integer value for the constant denominator K and bw is the num-
ber of bits for the input and output ports of the design.

For the case of modv the C application is built as follows:

make NUMBITS=${bw} modv.exe

The produced executables can be used for generating reference I/O data as follows:

./modk.exe >& modk_data.txt

Again, the corresponding simulation script (run-sim-modk.sh or run-sim-modv.sh)
automatically takes care of generating the executables and running them to produce ref-
erence I/O data, so this process needs not be run manually.

7. Prerequisities
∙ Standard UNIX-based tools (tested with gcc-4.6.2 on MinGW/x86).

– make

– bash (shell)

– perl

For this reason, MinGW (http://www.mingw.org) or Cygwin (http://sources.redhat.
com/cygwin) are suggested, since POSIX emulation environments of sufficient
completeness.

∙ GHDL simulator (http://ghdl.free.fr) or Modelsim (http://www.model.com). The
latest GHDL distribution (0.29.1, Windows version) also installs GTKwave on
Windows.

∙ Xilinx ISE (free ISE webpack is available from the Xilinx website: http://www.
xilinx.com)

8. Contact
You may contact me at:

Nikolaos Kavvadias <nikos@nkavvadias.com>

6

http://www.mingw.org
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://ghdl.free.fr
http://www.model.com
http://www.xilinx.com
http://www.xilinx.com
mailto:nikos@nkavvadias.com

http://www.nkavvadias.com
http://www.perfeda.gr
Perfeda Technologies headquarters
35100 Lamia, Fthiotis
Greece

7

http://www.nkavvadias.com
http://www.perfeda.gr

	1. Introduction
	2. Functional description
	3. File listing
	4. Simulation
	4.1. GHDL
	4.2. Modelsim

	5. Synthesis
	5.1. Running the synthesis script

	6. Reference software application
	7. Prerequisities
	8. Contact

