perfeda

XMODZ Modulo reduction unit

www.nkavvadias.com

Overview

The **XMODZ** IP collection provides fast hardware implementations for the **x mod z** computation on integers. The collection comprises of two distinct IP modules, **modk** for modulo by a fixed integer constant and **modv** for modulo by an integer variable.

The algorithm used for implementing $x \mod z$ is based on modulo reduction where at each stage, the magnitude of x is reduced, but the residue remains the same.

Modulo reduction is widely used in cryptographically-secure systems, for fast pseudo-random number generation and is suitable for RNS (Residue Number System) applications.

Functional description

XMODZ is implemented as fully-parameterized RTL VHDL using a clean process-based style with combinational-only and sequential-only processes. Both registered and combinational designs provide a fully-synchronous interface by registering their outputs. The interface block diagrams for both designs are shown below. Each core uses a single external clock source, connected to signal CLK. It can be asynchronously reset with the active high signal RESET. Signal START activates the core. Data inputs X and Z (the latter only for the modv case) are the numerator and denominator involved in the modulus operation. Data output Y is the outcome of this computation. DONE signifies the end of the current computation. READY indicates that the core can accept new input.

FEATURES

Highly-parameterized synchronous architecture

Combinational or register-pipelined operation

Support for arbitrary-precision integer arithmetic

Compatible with IEEE-1076 standard Uses the standard IEEE packages (numeric std)

Tested for large data bitwidths (including 256-bit, 512-bit operation)

Simple block-level interface for bus-level integration to third-party designs

DELIVERABLES

Documentation in ASCII text, PDF, HTML forms Vendor-independent VHDL code for both cores Self-checking testbenches Configurable multi-precision integer

reference C models for test data generation

Performance/QoR

IP	Mode	Clock freq.	Area (LUTs/regs)	Time
modk (K=10)	REG	239	2914 (6%)/ 2135 (2%)	4.44 us
modv	REG	198	4706 (10%)/ 6241 (6%)	5.38 us

Synthesis results on Xilinx XC6VLX75T for reference use. Timing estimates for 1000 random tests. 64-bit data width is assumed.