
Notes on GIMPLE representation and code generation

Date: 2011-06-25

Author: Nikolaos Kavvadias

Email: nikolaos.kavvadias@gmail.com

Revision: 0.0.1 (2011-06-02), 0.0.2 (2011-06-25)

Web site: http://www.nkavvadias.com

Copyright: Nikolaos Kavvadias (C) 2011

Contents

1 Introduction

2 Target audience

3 Issues with tagged GIMPLE

3.1 Losing the original semantics of the source program

3.2 Inconsistency in handling labels

3.3 Destroyed interfaces

3.4 Pointer expressions

3.5 Function calls

3.6 Inconsistency in array initialization sequences

3.7 Inconsistency of the tagged GIMPLE format

3.8 Lack of bit-accurate semantics

4 Final notes

1 Introduction

GIMPLE is the machine-independent intermediate representation used in modern GCC releases (post
version 4.0). While the GIMPLE API for code generation and manipulation has matured over time,
the corresponding textual representation is yet to be in a stable form. This issue hampers many serious
efforts for code generation from and to GIMPLE.

Good candidates for the textual representation seem to have been in play for some time. The wiki
site http://gcc.gnu.org/wiki/GIMPLE sketches the textual IR that is expected to be implemented by
the GIMPLE frontend and backend (both under development). Another case of a textual GIMPLE
are the formats generated as a GIMPLE dumps. We distignuish here two formats: the format in
*.t004.gimple files (tagged GIMPLE) and the one e.g. in *.t140.optimized files (GIMPLE-C ). Both
formats express the low-level GIMPLE representation, which is closer to classic three-address code than
high-level GIMPLE; the latter is closer to the GENERIC AST representation. An extended form of
GIMPLE dumps are expected to be established as the GIMPLE language semantics.

For reference tagged GIMPLE is generated by the command-line option:

1

http://gcc.gnu.org/wiki/GIMPLE


-fdump-tree-all-raw

while GIMPLE-C is generated by:

-fdump-tree-all and -fdump-tree-gimple

the latter only emitting the *.t004.gimple file.
The rest of this document discusses open issues with the textual GIMPLE IRs, focusing on the

tagged GIMPLE format. It will not cover extended semantics issues that are covered much better at
http://gcc.gnu.org/wiki/GIMPLEFrontEnd

2 Target audience

This document is expected to be of interest to compiler/translator implementors using GIMPLE as
either a source or target language.

3 Issues with tagged GIMPLE

Here follows a listing of some issues that can be identified with using tagged GIMPLE. Most of them
apply to the GIMPLE-C format as well.

3.1 Losing the original semantics of the source program

One such example is the omission of emitting global variables. A workaround for some cases is the
definition of static variables in the original source. This approach provides only specific file/translation
unit scope to globals but it is not certain whether the extern specifier is handled properly for referencing
these globals from external scope.

3.2 Inconsistency in handling labels

Automatically generated labels (by the gimplifier) and labels defined in the source program are rep-
resented differently. The first category are enclosed in single wedges < > while the later are explicitly
defined and are used without wedges.

For example, this is the definition of an automatically generated label:

gimple_label <<D.1983>>

while the following is the (redundant) definition:

void V1 = <<< error >>>; ... ‘‘gimple_label <V1>

and the use of a source label:

gimple_cond <eq_expr, D.1985, 1, V5, <D.1986>>

3.3 Destroyed interfaces

Function interfaces are not maintained appropriately since the original argument types in a function
definition may be replaced. This is the case with array arguments (with static sizes) in the definition
of non-root procedures.

Here follows an example. This is the a partial view of the source program:

2

http://gcc.gnu.org/wiki/GIMPLEFrontEnd


void evalcoins(int n, int amount, int C[], int *ncoins, int D[])

{

...

}

void coins(int n_eurocents, int *n_coins_used)

{

int C_euro[15], D_euro[15];

...

evalcoins(15, n_eurocents, C_euro, &n_items, D_euro);

...

}

However, this is the tagged GIMPLE form of the same program:

evalcoins (int n, int amount, int * C, int * ncoins, int * D)

gimple_bind <

...

>

coins (int n_eurocents, int * n_coins_used)

gimple_bind <

int C_euro[15];

int D_euro[15];

...

gimple_call <eval-

coins, NULL, 15, n_eurocents, &C_euro[0], &n_items, &D_euro[0]>

...

>

3.4 Pointer expressions

Low-level GIMPLE (tagged and GIMPLE-C) use two basic specific operations for dealing with pointer
expressions and indirect references, the pointer_plus_expr and indirect_ref.

A pointer_plus_expr in tagged GIMPLE appears as follows:

gimple_assign<pointer_plus_expr, D.1986, D, D.1985>

where D is an array, D.1985 a temporary int variable and D.1986 a temporary variable defined as
pointer to int.

The same in GIMPLE-C is the following:

D.1986 = D + D.1985

This operation adds the offset determined by D.1985 to the base address of array D, expressed as
D. Pointer D.1986 then can be used for intexing the array.

A typical idiom in generated GIMPLE suggests that pointer_plus_expr is followed by an indi-

rect_ref. The indirect reference is used to access the array and loading the contents of a memory
position to a variable.

An indirect_ref in tagged GIMPLE appears as follows:

gimple_assign<indirect_ref, D.1987, *D.1986, NULL>

and the same in GIMPLE-C is:

3



D.1987 = *D.1986;

In order to avoid a thorough pointer analysis for establishing that D.1986 points to the contents
of array D, typical data-dependence analysis can be used to trace that D is the referenced entity by
D.1986.

3.5 Function calls

Function calls are represented by gimple_call in tagged GIMPLE. Due to the issue 3 (Destroyed
interfaces), in some cases calls-by-reference appear when not really needed. This refers to the simulated
call-by-reference available in the C programming language, and not the actual kind that can be found,
e.g. in Perl.

For example the following call is by-reference:

gimple_call <..., &C_euro[0],...>

making use of the address of the first element of C euro (the base address).
With interfaces kept unchanged, the following would suffice:

gimple_call <..., C_euro, ...>

3.6 Inconsistency in array initialization sequences

An array can be initialized either by a literal initialization list or by emitting a sequence of operations
for initializing its contents. From a black-box point of view, it seems that the gimplifier arbitrarily
chooses which approach to follow.

For example, in our example, the C euro is initialized via explicit operations:

gimple_assign <integer_cst, C_euro[0], 1, NULL>

gimple_assign <integer_cst, C_euro[1], 2, NULL>

gimple_assign <integer_cst, C_euro[2], 5, NULL>

gimple_assign <integer_cst, C_euro[3], 10, NULL>

gimple_assign <integer_cst, C_euro[4], 20, NULL>

gimple_assign <integer_cst, C_euro[5], 50, NULL>

gimple_assign <integer_cst, C_euro[6], 100, NULL>

gimple_assign <integer_cst, C_euro[7], 200, NULL>

gimple_assign <integer_cst, C_euro[8], 500, NULL>

gimple_assign <integer_cst, C_euro[9], 1000, NULL>

gimple_assign <integer_cst, C_euro[10], 2000, NULL>

gimple_assign <integer_cst, C_euro[11], 5000, NULL>

gimple_assign <integer_cst, C_euro[12], 10000, NULL>

gimple_assign <integer_cst, C_euro[13], 20000, NULL>

gimple_assign <integer_cst, C_euro[14], 50000, NULL>

It is not clear why an initialization list is not used:

int C_euro[15] = {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000};

Automatically generated labels (by the gimplifier) and labels defined in the source program are
represented differently. The first category are enclosed in single wedges < > while the later are explicitly
defined and are used without wedges.

For example, this is the definition of an automatically generated label:

gimple_label <<D.1983>>

while the following is the (redundant) definition:

4



void V1 = <<< error >>>; ... ‘‘gimple_label <V1>

and the use of a source label:

gimple_cond <eq_expr, D.1985, 1, V5, <D.1986>>

3.7 Inconsistency of the tagged GIMPLE format

As discussed in the introduction, the tagged GIMPLE format uses alternate syntax for the unoptimized
(*.t004.gimple) and certain optimized (e.g. *.t140.gimple) intermediate code dumps. It would be clearer
if a single convention throughout all GIMPLE dumps.

3.8 Lack of bit-accurate semantics

The availability of bit-accurate data types is an interesting asset of modern compiler infrastructures such
as LLVM: http://www.llvm.org. LLVM uses the LLVM bitcode IR which adheres to such semantics.
On the other side, GCC GIMPLE might be too closely coupled with C-like semantics. Especially,
implementors of non-conventional backend architectures (e.g. developers of hardware compilers) would
be interested in a form of GIMPLE with bit-accurate types.

For example, the following would denote a 14-bit unsigned integer and a 8.16 signed fixed-point
representation, respectively.

• u14

• q8.16s

4 Final notes

This document is a work-in-progress. Several aspects of programming language translation to low-level
GIMPLE are not covered:

1. Support for recursion.

2. OMP semantics.

3. _Bool data types.

4. Explicit return types (other than void).

5. Semantics expected to be integrated as part of GCC mainline. These reflect the current
status of the gimple-front-end branch, which adds important capabilities to the GIMPLE
infrastructure such as consistently-styled declarations for pointers, arrays, and compound
types (structs, unions).

5

http://www.llvm.org

