Scalable register bypassing for FPGA-based
processors *

Nikolaos Kavvadias *, Spiridon Nikolaidis

Section of Electronics and Computers, Department of Physics
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

Abstract

In this paper, a scalable scheme, configurable via register-transfer level parameters,
for full register bypassing in a modern embedded processor architecture, termed By-
oRISC, is presented. The register bypassing specification is parameterized regarding
the number of homogeneous register file read and write ports and the number of
pipeline stages of the processor. The performance characteristics (cycle time, chip
area) of the proposed technique have been evaluated for FPGA target implementa-
tions of the synthesizable ByoRISC model. It is proved that, a full bypassing network
is a viable solution for the elimination of data hazards when servicing instructions
with multiple read and write operands. While the maximum clock frequency is re-
duced by 17.9% in average, when using partial versus full forwarding, the positive
effect of custom computation eliminates this effect by providing cycle speedups of
3.9%x to 5.5x and corresponding execution time speedups for a ByoRISC testbed
processor of 3.6x. Individual application speedups of up to 9.4x have also been
obtained.

Key words: Microprocessors, Register bypassing, Field-programmable gate arrays,
Embedded systems, Hardware description languages
PACS: 89.20.Ff

* This work was supported by the General Secretariat of Research and Technology
of Greece and the European Union.
* Corresponding author.

Email addresses: nkavv@physics.auth.gr (Nikolaos Kavvadias),
snikolaid@physics.auth.gr (Spiridon Nikolaidis).

Preprint submitted to Elsevier 1 May 2010

1 Introduction

A recent approach to embedded System-on-Chip design involves the use of
configurable and extensible processors [1-5], usually in the form of synthe-
sizable cores, offering architecture customization possibilities. Configurability
lies in tuning architectural parameters, while extensibility of a processor usu-
ally refers either to tightly-coupled modifications obtained by adding single-,
multi-cycle or pipelined versions of custom instructions or to loosely-coupled
accelerators not directly integrated within the processor pipeline.

These architectural frameworks are regularly updated with enhancements tar-
geting at the improvement of diverse and often conflicting requirements such
as low power consumption, performance for the general-purpose or specific ap-
plication domains, code size and overall system cost. During the development
of such processors and especially regarding non-legacy architectures, the de-
signers ought to consider the entire space of architectural solutions regarding
the instruction set and underlying microarchitecture. However, it is often that
designers limit themselves to solutions that are empirically derived from past
practices in order to seemingly reduce complexity without negatively affecting
performance. An interesting example is the domination of the three-address
instructions limitation which is closely associated to a general-purpose regis-
ter file with a small number of read and write ports, typically two and one,
respectively. While a multi-port register file could provide significant perfor-
mance boost, it is regarded as unnecessary complexity, dramatically degrading
the timing characteristics of the processor, especially if its implementation is
combined with data forwarding mechanisms across several pipeline stages.

In this work, we focus on the design and evaluation of data forwarding (register
bypassing) architectures, which is a technique for eliminating data hazards in
pipelined processors. The function of the bypassing hardware is to resolve
data hazards that arise when an instruction needs the results of previous
instructions in the pipeline that have not been written to the register file by
the time the current instruction reads its source operands from the register
file. Generally, it is expected that extensive bypassing comes with a significant
impact on cycle time, area and power consumption of the processor.

In this paper, a scalable and parameterized register bypassing scheme is pre-
sented that can be utilized in current embedded processors. The specification
of the bypassing architecture can be configured for the desired number of reg-
ister file read/write ports and pipeline stages of the processor in mind. The
main contributions of this paper can be summarized as follows:

e development of a clear and concise register bypassing specification that is
fully parameterized and can be easily applied to different processors. Espe-

cially, it can be of particular interest to developers of new/emerging pro-
cessor architectures for providing more architectural options to their end
users.

e the effect of the bypass circuitry on the timing and area of a representative
processor are carefully examined. Most previous works only model either a
partial processor or solely the bypassing mechanisms.

e specific issues regarding targeting the bypass specification to recent FPGA
devices are highlighted. FPGAs have been neglected as an implementation
medium even in recent works on the subject.

The rest of this paper is organized as follows. Related work is summarized
in Section 2. The processor pipeline model is briefed in Section 3. Section 4
discusses the details of the scalable register bypassing (SRB) specification, and
in Section 5 its performance is evaluated in terms of timing characteristics and
area requirements as well as in context of an image processing application set
running on an embedded RISC processor. Finally, Section 6 summarizes the

paper.

2 Related work

In related work, a number of approaches have been proposed for the evaluation
of register bypassing networks [6-10]. Most of them deal with exploring the
design space of partial bypassing for an application set, representative of a
particular domain, in order to drive the customization and reduction of a full
bypass network. In the aforementioned works, neither a concise formalism nor
a reusable model of bypassing, applicable to FPGAs, is presented that can
provide sufficient assistance to the processor designer. Further, it is common
that the bypass network is evaluated for timing and area characteristics apart
from the processor, while a processor model taking account only the cycle
behavior of using the bypassing mechanisms is used separately for obtaining
execution cycles measurements.

In an early work in this field, Abnous et al. [6] analyzed partial bypassing
between VLIW functional units in their 4-integer-unit VIPER processor. They
argued that complete bypassing is too costly in VLIW processors even though
significant performance benefits can be achieved. The pipeline model of VIPER
is rather inflexible and cannot be used for exploration purposes: it is restricted
to four stages, deduced from the classic 5-stage pipeline of early RISCs by
removing the memory access stage. In order to achieve this, the processor
model is limited to a single addressing mode (register indirect).

Further, in [7] the architecture of a detailed bypassing execution unit model
is described and applied for a multiple instruction issue processor. Similar

to [6] the processor model features a four-stage pipeline, but in this case with
configurable multiplicity of execution datapaths. A design space exploration
approach for eliminating infrequently used routes in register bypass networks
has been presented in [8] applied to the case of a 5-issue custom VLIW proces-
sor. In a similar architectural context, low-power optimizations that exploit
the forwarding paths of a fixed register bypass network, for the purpose of
minimizing power-costly accesses to/from the register file have been also ex-
amined [10].

In [9] an operation table formalism was developed for capturing the bypass
mechanisms in pipelined embedded processors, along with an automation tool
(PBExplore) for exploring the design space, constituted of the partial bypass-
ing solutions, in terms of achievable performance. The authors assume that
full register bypassing is not a viable solution, thus partial bypassing is pre-
ferred. However, the integration of the bypass networks within a synthesizable
description of their testbed architecture (Intel XScale) is not considered at
all, even though this would be necessary in order to evaluate the effect of the
bypassing network on the processor cycle time and aggregate area. Further,
in their work, processor implementations on FPGAs have not been considered
at all.

A recent technique [11] on the design of register bypasses involves a compiler-
driven approach based on the fact that certain register addresses are not ac-
tually read, given that the corresponding operands are forwarded to the ap-
propriate ports by the bypass network. In this case, the processor instructions
have to be statically rewritten to free the corresponding fields in order to de-
rive the appropriate control signals. Their architectural model is closer to our
approach, incorporating a multi-port register file and a configurable number
of pipeline stages. However, the main aim of this technique is the energy con-
sumption and area reduction of the redundant bypasses for a VLIW ASIC
processor model, and not the thorough investigation of the practicality of full
register bypassing on FPGA-based soft processors.

An extensive design space exploration of clustered VLIW architectures, typ-
ically employing 2, 4 or 8 partitioned register files can be found in [12]. The
complexity of a full bypass network is reduced due to the smaller number of
read and write ports of the partitioned register files, with the tradeoff of intro-
ducing copy operations among these. For the case of the unicluster architecture
which is also investigated as a reference, it is stated that its performance is
significantly lower to the clustered architecture. While this is true, the ex-
ploration targets a standard cell VLSI process, and performance on modern
FPGA devices is not discussed.

A common denominator of some of these works [8,9] is the consideration of
compiler visibility of the partial bypasses. Here, although partial bypassed

networks are possible, we focus on presenting a scalable specification for full
register bypassing hardware that is fully transparent to the programmer.

3 An abstracted view of the ByoRISC processor model

The architectural model targeted in this paper, shown in Fig. 1, is the By-
oRISC processor [13]. A ByoRISC processor can be extended by application-
specific hardware extensions (ASHES) in the form of either custom instruction
units or locally-interfaced coprocessors. Such ASHEs can implement multi-
input multi-output (MIMO) computations with local state that may have an
arbitrary number and combination of load/store accesses to the data memory.
The ByoRISC template employs a pipeline stage structure consisting of:

e an instruction fetch stage, IF (not shown in Fig. 1) of a possibly wide in-
struction, incorporating one or more micro-operations to be executed in
their corresponding execution slots

e a custom instruction operand address access stage and an instruction decode
stage where N RP register operands are read

e NPIPFE execution stages with at least one of them accessing the data
memory for full support of ByoRISC ASHESs

e a register write-back stage for writing NW P register operands

The basic assumption for the first execution stage is that it receives up to NRP
read register operands from a multi-ported register file and produces a result
vector of up to NW P write register operands. There is no limitation on the
policy followed in the architecture for the incorporated functional units: the
processor can present a VLIW /EPIC architecture, servicing a number of inde-
pendent micro-operations in the same control step, or it can evaluate MIMO
(Multiple-Input Multiple-Output) instructions [14] that are represented by
data-dependence directed acyclic graphs of basic block scope at the level of
compiler intermediate language. The subsequent execution stages accept the
result vector from their preceding stage, which is of width NW P x DW , where
DW is the register word width. Further, it can be specified that they read up
to N RP from the forwarded read operands, given that these have been stored
in the corresponding pipeline registers. The final pipeline stage is responsible
for committing the final result vector to the register file. Additional compu-
tations do not take place at this stage, so reading the read register operand
vector and the corresponding register addresses (assumed through the figure)
is not necessary. Any of the NPIPFE execution stages can be configured for
multi-cycle execution, stalling the previous ones for the required number of
cycles.

—— NWP-1
: Multi-port
| register file
- (NWP/NRP
write/read ports)
—— 0
T |
0 1-------- NRP-1
Read operand Register read
multiplexers addresses
control (of width
T . Bypass NRPxRAW
Pipeline stage: Execution 1 network)
A A
[T | [[Register write addresses
0 1------ NRP-1 0 1----- NWP-1|

from stage 1 from stages 1...NPIPE-1
|

! (of width NWPXRAW)

Pipeline stage: Execution
NPIPE-1

from stage NPIPE-1
Pipeline stage:
Register write-back

Fig. 1. Microarchitecture model for the ByoRISC contemporary soft-core processors,
focusing on data forwarding of intermediate results.

.

The bypass network produces the multiplexer control signals that are used
within the first execution stage for forwarding the appropriate data value;
this would be either the one retrieved from the register file, or an intermediate
result from one of the pipeline registers, to be written at a later stage to
the same physical address. The first execution stage incorporates a set of
multiplexers for selecting one of the forwarded values per register file read
port.

This model encompasses the vast majority of the existing soft-core processors.
It even includes provisions for future embedded soft-core processor architec-
tures that will be able to issue, process and commit several operands in either
the same cycle or the same control step.

loaZ (MW P j+log2(MPI PE+1}-1 logZ(NPIPE+1} log2(NPIPE+1)1 0

wp_sel pipe_sel

Fig. 2. Execution 1 stage multiplexer control signals (alu_opd_v_sel in pseudocode).

4 RT-level specification of the scalable register bypassing mecha-
nisms

In order to assist the application of the Scalable Register Bypassing mech-
anisms we present here pseudocode semantics for their description. These
semantics have inspired a synthesizable RTL description that has been suc-
cessfully used for the ByoRISC in-house embedded processor, whose baseline
version shares strong similarities with the DLX, MIPS-I [15] (regarding the in-
struction set) and MMIX [16] (orthogonality of the instruction encodings) pro-
cessors. More specifically, the baseline ByoRISC utilizes a single issue 6-stage
pipeline incorporating an integer register file with NRP =2 and NWP = 1.
A formal representation of SRB micro-architectural level operations can be
exploited in the scope of designing contemporary embedded soft-core archi-
tectures or delivering architectural variations within a given processor family.

From a high-level point of view, the SRB architecture is fully parameter-
ized regarding the number of read (NRP) and write (NW P) ports of the
programmer-visible register set, and the number of execution pipeline stages
(NPIPE). In the case of the in-house processor (ByoRISC), it is NPIPE = 2
and the two respective pipeline stages are EX (Datapath Execution) and MEM
(Memory Access). The SRB hardware mainly comprises of the following com-
ponents:

e NRP (NPIPE x NW P + 1)-to-1 multiplexers in the first execution stage
of the processor for selecting the proper forwarded datum per read port.

e NRP x NPIPFE x NW P comparators for evaluating the multiplexer con-
trol signals. In case of supporting multi-cycle execution, the result of each
comparator is AND-gated with a flag stating the completion of multi-cycle
operation for the corresponding pipeline stage.

Each of the first execution stage multiplexers require a control signal of width
[loga(NW P)| + [loga(NPIPE + 1)]. The multiplexer control signal format
can be subdivided into two fields: field ‘pipe_sel’ which selects the appropriate
pipeline execution stage for obtaining an intermediate result, with 0-th order
referring to the register operand read stage and field ‘wp_sel’ for denoting a
specific write port enumeration. The format is illustrated in Fig. 2.

The pseudocode of the data forwarding architecture, presented in Fig. 3, con-
sists of two parts: the first part, named BypassNetwork is the actual forward-

ing unit which is a combinational module required for calculating the data
forwarding multiplexer control signals, and the second part, DataForwarding-
Multiplexers, implements the actual data forwarding multiplexers. In the pseu-
docode of Fig. 3 mutually-exclusive selections that can be performed in parallel
are denoted by a for ... choice statement, meaning that the iterations can be
spatially mapped. It is implementation specific, if a balanced structure or a pri-
ority encoded one will be used. A for... choice can be used as a right hand side
expression, typically for implementing, nestable conditional statements for a
settable number of choices, controlling assignments to a single entity. They can
be implemented by case-when or if-elsif-else-end if conditional statements in
VHDL and switch-case blocks in ANSI C. Further, a bitvector intrinsic is used
similar to the conv_std_logic_vector(x,y) library function in VHDL, where x is
an integer, and y the bitwidth assigned for its binary representation. Vectors
have a ‘_v’ suffix, so that the rdata, wdata, raddr and waddr prefixes de-
note read and write, register operands and addresses, respectively. For these
2-dimensional vectors (arrays), the first dimension denotes the pipeline stage
enumeration and the second addresses a bit-field of the entry for the specified
pipeline stage. alu_opd_v_sel is the control signal (single-dimensional) vector
for the data forwarding multiplexers. Trivially, a concat concatenates two vec-
tors to form an aggregate one, in the essence of the VHDL ‘&’ operator. A
colon ‘7 is used for specifying a bit-field in the same way it is used in the
Verilog-HDL and it corresponds to downto in VHDL.

Table 1 summarizes the notation used for parameters, signals and architectural
resources of the SRB.

BypassNetwork()
begin
for i in 0..NRP-1 do
alu_opd-vsel[(log2(NW P) + logo(NPIPE + 1)) - (i + 1) — 1:(log2(NW P) 4+ log2(NPIPE + 1)) - 1] +
for j in 0..NWP-1 choice
for k in 1..NPIPE choice
bitvector(j,loga(NW P)) concat bitvector(k,logo(NPIPE + 1)) when
(a register write is permitted) and
(waddr v[k,RAW - (j 4+ 1) — 1 : RAW - 4]
equals raddr_v[0,RAW - (i +1) — 1: RAW -4]);
endwhen
endfor
endfor
endfor

end

DataForwardingMultiplexers()
begin

continued on next page

continued from previous page

for i in 0..NRP-1 do
rdata_v[1,DW - (i + 1) — 1:DW - 1] <
for j in 0..NWP-1 choice
for k in 0..NPIPE choice
if k equals 0
rdata_v[0, DW - (i+1) —1: DW -iJ;
else
wdata_v[k,DW - (NWP — (j —1)) — 1:DW - (NW P — j)] when
(alu_opd_v_sel[(loga(NW P) 4+ log2(NPIPE + 1)) - (i + 1) — 1:(logo(NW P) + log2(NPIPE + 1)) - 1]
equals bitvector(2NPIPE . (NWP — j),loga(NW P) + log2(NPIPE + 1)));
endwhen
endif
endfor
endfor

endfor

end

Fig. 3: Pseudocode for the scalable register bypassing (SRB) specification.

Table 1
Notation used in the pseudocode of Fig. 3.
Name Description
RAW Register address width
DW Data word width

NWP Number of register file write ports and
pipeline stage result vector width
NRP Number of register file read ports
NPIPE | Number of pipeline stages between
operand read and write-back

4.1 Incorporating the bypassing mechanisms to the ByoRISC processor

A more detailed view of a 6-stage pipeline ByoRISC architecture is shown in
Fig. 4. In the figure, the bypass network part of the forwarding logic (termed
as forwarding unit here according to common parlance [15]) and the data
forwarding multiplexers as well as their associated interconnections can be
easily identified. The multi-port register file has 3 read ports and 2 write
ports and is implemented in 6 embedded memories (Xilinx block RAMs). The
pipeline stage registers are used to appropriately pass the read data vector
(rdata0 to rdata2), the read operand addresses (raddr0 to raddr2), and the
write operand addresses (waddr0 to waddrl). The write data vector (wdata0
to wdatal) is propagated accordingly following its generation at the EX stage
of the processor pipeline.

The VHDL description of the forwarding logic is generated with the help
of a custom RTL generator accepting the NW P, NRP and NPIPFE param-

v - ¥
Y Y Y

BRAM BRAM BRAM BRAM BRAM BRAN
(RO-R127) (RO-R127) (RO-R127) (R128R255) (R128-R255)| |(R128-R255)
i i i i ' !
r—]
[] [
[[| [
Lo MUX forwarding
ID/EX unit
pipeline register
| rdata2 ‘ raatat |rdataU| waddr1 ‘ waddr0 | rada2 [radari | racao |

n
L] | | |

data forwarding
EXMEM

pipeline | ygatap [waatat [rdata0 [wadd1 | wadd | radgo |
register

MEMAWB

Pty [vastad [weter | wasert | vaaono |

Fig. 4. A more detailed model of a ByoRISC processor instance, clearly depicting
the logic associated with forwarding.

eters. The generator produces VHDL’93-compliant code for the forwarding
unit (Fig. 5) and the data forwarding multiplexers (Fig. 6) as shown in the
corresponding listings.

5 Performance evaluation of the scalable register bypassing archi-
tecture

As it has been mentioned before, the Scalable Register Bypassing architecture
is part of the ByoRISC processor design [13]. ByoRISC has been designed as
a configurable and extensible architecture. It has 32-bit instruction and data
word width, Harvard memory architecture, and can be configured for either
a b- or a 6-stage pipeline with full data forwarding. The processor can be
extended via ASHESs, that can service possibly multi-cycle custom instructions
with an arbitrary number of loads and stores from the data memory. Other
important characteristic of the processor is that there is no centralized decoder,
but rather a form of distributed decoding mechanisms to each pipeline stage is
used, similar to application-specific processors designed with the ASIPMeister
tool [17]. Further, for custom instructions with a large number of read and
write operands (have been proved for up to 8 read and 8 write operands on
recent FPGA architectures), the additional register addresses that do not fit
in the instruction encoding limits can be obtained from a LUT, that resides in
an interim pipeline stage prior main instruction decode. This scheme is termed
as secondary instruction decode (SID).

10

entity forwarding_unit is
-- generics: NWP, NRP, RAW (regtister address wtdth)

port (

raddr_v_idex : in std_logic_vector (NRP*RAW-1 downto 0);
waddr_v_exmem : in std_logic_vector (NWP*RAW-1 downto 0);
waddr_v_memwb : in std_logic_vector (NWP*RAW-1 downto 0);
RegWrite_v_exmem : in std_logic_vector (NWP-1 downto 0);
RegWrite_v_memwb : in std_logic_vector (NWP-1 downto 0);

alu_opd_v_sel : out std_logic_vector (((LOG2(NWP)+2)*NRP)-1 downto O0)

-- L0OG2() s a ceiling log2 function
)

end forwarding_unit;
architecture rtl of forwarding_unit is
FW_NRPI_GEN : for i in O to NRP-1 generate

L_FW_NRPI_GEN:
alu_opd_v_sel ((LOG2(NWP)+2)*(i+1)-1 downto (LOG2(NWP)+2)*i) <= "010"

when (RegWrite_v_exmem(0) = ’1’ and waddr_v_exmem(RAW-1 downto 0) =
raddr_v_idex(RAW*(i+1)-1 downto RAW=*i))
else "O0O1"
when (RegWrite_v_memwb(0) = ’1’ and waddr_v_memwb(RAW-1 downto 0) =
raddr_v_idex(RAW*(i+1)-1 downto RAW=*i))
else "110"
when (RegWrite_v_exmem(1l) = ’1’ and waddr_v_exmem(2*xRAW-1 downto RAW) =
raddr_v_idex (RAW*(i+1)-1 downto RAW*i))
else "101"
when (RegWrite_v_memwb(1l) = ’1’ and waddr_v_memwb (2*xRAW-1 downto RAW) =
raddr_v_idex(RAW*(i+1)-1 downto RAW=*i))
else "000";
end generate FW_NRPI_GEN;
end rtl;

Fig. 5. VHDL description for the forwarding unit (BypassNetwork) generated for:
NWP=2,NRP=3,NPIPE=2.

For assessing the performance of the SRB architecture, we evaluate the bypass
network over the entire parameter set for a range of values; NWP : 1 — 8,
NRP : 2 -8 and NPIPE : 1 — 3. A specific case of an entire ByoRISC
processor with full data forwarding in respect to different values of read and
write register file ports is also considered (NPIPE = 2). For each case, the
timing (either combinational propagation delay or maximum clock frequency)
and area requirements are measured for a representative FPGA process. The
logic synthesis tool used is Xilinx Webpack ISE 9.2.

Throughout the evaluations, the XC4VLX25 device (FF668 package and ‘-
10" speed grade) which is one of the smallest available Virtex-4 devices. The
maximum capacity of XC4VLX25 is 10,572 slices, 72 18-kbit block RAMs
(BRAMSs) and 48 DSP48 datapath blocks, each one containing an 18 x 18-bit
embedded multiplier.

11

entity fwdmuxes is
-- generics: NWP, NRP, RAW

port (

regout_v_ex : in std_logic_vector (NRP*32-1 downto 0);
alu_opd_v_sel : in std_logic_vector (((LOG2(NWP)+2)*NRP)-1 downto 0);
rf_wbdata : in std_logic_vector (NWP*32-1 downto 0);
result_v : in std_logic_vector (NWP*32-1 downto 0);
regout_v_fwd : out std_logic_vector (NRP*32-1 downto 0)

) ;

end fwdmuxes;

architecture rtl of fwdmuxes is
begin
FW_NRPI_GEN : for i in O to NRP-1 generate
L_FW_NRPI_GEN:
regout_v_fwd(32%(i+1)-1 downto 32%i) <=
rf_wbdata (32*(NWP-1) -1 downto 32%(NWP-2)) when
(alu_opd_v_sel((log2(NWP)+2)*(i+1)-1 downto (log2(NWP)+2)*i) =
conv_std_logic_vector (4*(NWP-2)+1,1log2 (NWP)+2))
else
result_v (32*(NWP-1) -1 downto 32%(NWP-2)) when
(alu_opd_v_sel((log2(NWP)+2)*(i+1)-1 downto (log2(NWP)+2)*i) =
conv_std_logic_vector (4*(NWP-2)+2,10g2(NWP)+2))
else
rf_wbdata (32*x(NWP)-1 downto 32*(NWP-1)) when
(alu_opd_v_sel ((log2(NWP)+2)*(i+1)-1 downto (log2(NWP)+2)*i) =
conv_std_logic_vector (4*(NWP-1)+1,10g2(NWP)+2))
else
result_v (32*(NWP)-1 downto 32*(NWP-1)) when
(alu_opd_v_sel((log2(NWP)+2)*(i+1)-1 downto (log2(NWP)+2)*i) =
conv_std_logic_vector (4*(NWP-1)+2,log2 (NWP)+2))
else
regout_v_ex (32*(i+1) -1 downto 32%i);
end generate FW_NRPI_GEN;
end rtl;

Fig. 6. VHDL description for the data forwarding multiplexers generated for:
NWP=2,NRP=3,NPIPE=2.

5.1 The SRB bypass network

The bypass network —forwarding unit (fwdunit) and data forwarding mul-
tiplexers (fwdmuxes) —of the SRB architecture has been written in VHDL
and synthesized for the XC4VLX25 FPGA device. Fig. 7 depicts the delay
estimates for different number of supported write ports (NWP={1 ...8})
and for pipeline configurations with NPIPE = 1 (common EX, MEM stage),
NPIPE = 2 (separate EX and MEM stages), and NPIPFE = 3 (two execu-
tion stages: EX1, EX2 and MEM stage). A complete set of measurements has
been obtained while altering the number of read ports (NRP={2 ...8}). The
effect of different NW P values is minimal, having an effect of 3% on the esti-
mated propagation delay due to the fact that, in Virtex-4, wide multiplexers
are available for accessing the entries read from the register files and thus the
need for additional hardware is eliminated.

The chip area requirements are shown in Fig. 8.

12

Propagation delay for Xilinx
KCAVLX25-FFBE8-10

10

MPIPE=1 —+— NPIPE=2 —* NPIPE=3 —*—

Propagation delay (ns)

Number of (register file) read ports: NRP

(a) Forwarding unit.

Propagation delay for Xilinx
XCAVLX25-FFG68-10

NPIPE=1 —F— NPIPE=2 —* NPIPE=3 —*—

Propagation delay (ns)

MNumber of (register file) read ports: NRP

(b) Data forwarding multiplexers

Fig. 7. Propagation delay for the SRB bypass network.

In more detail, 8-to-1 multiplexers can be implemented with one level of logic
in Virtex-4 FPGAs. More specifically, pairs of adjacent slices are used, from
which a MUXF6 is used to combine the outputs of MUXF5 resources. The
effect of increasing the number of read ports is clearly visible with a negative
impact of about 2 times the minimum value for the FPGA process. Recent
soft-core FPGA-based processors feature maximum clock frequencies in the
range of 80-200MHz [4,5] so that a less than 7ns bypassing delay could prove
reasonable especially for a moderate number of write ports. The corresponding
area requirements range from negligible to a significant contribution of 12.7%
of the device slices for the FPGA. Thus, even though for an FPGA device the
chip resources are constrained by default, constructing a bypass network for
full data forwarding is feasible.

13

Area for Xilinx XC4VLX25-FF668-10 Area for Xilinx XC4VLX25-FFE68-10

= (NPIPE =1) = (NPIPE =2)

o -

=) =l

w o

B B

] =

= =

= £

3 =1

£ =

o [u]

= &

= =

=3 =

= =

© 1 2 3 4 5 6 7 8 © 1 2 3 4 5 6 7 8

MNumber of (register file) write ports: NWP MNumber of (register file) write ports: NWP

Avrea for Xilinx XC4VLX25-FF663-10

= (NPIPE = 3)
8

2 600

5 jgg MRP=2 ———— MNRP=§ —=——
5

2 S0 NRP=3 ———— NRP=] —=—
£ 200 NRP=4 —=*— NRP=§ ——
§ 100 NRP=5 —=—

=3

=

Q

Number of (register file) write ports: NWP

(a) Forwarding unit.

Area for Xilinx XC4VLX25-FF663-10 Area for Xilinx XC4VLX25-FF668-10
(NPIPE = 2)

(NPIPE = 1)

Chip area (number of slices)
Chip area (number of slices)

Number of (register file) write ports: NWP Number of (register file) write ports: NWP

Area for Xilinx XC4VLX25-FFE63-10

_ (NPIPE = 3)
w

2

o

% 2000

5

5 1500 ' NRP=2 ——— NRP=f —=—
2

S 1000 i NRP=3 ——— NRP=] —=——
= 500 NRP=4 —%— NRP=§ —*——
2 NRP=5 —=—

o 0

=

o 1 2 3 4 5 6 7 8

Mumber of (register file) write ports: NWP

(b) Data forwarding multiplexers.
Fig. 8. Chip area in number of slices for the SRB bypass network.

5.2 FEffect of the SRB architecture on the ByoRISC processor

The bypass network has been incorporated in a synthesizable VHDL descrip-
tion of a complete architectural testbed (featuring more than 20 configurable
options), the ByoRISC processor [13]. The multi-port register file of By-
oRISC which is related to the operation of the SRB architecture comprises
of NW P x NRP block RAMs, and its design follows the approach described

14

Maximum clock frequency for Xilinx XC4VL¥25-FF668-10

120} no forwarding —+— forwarding ——*—
4

107.05 108.41

102.99 103.28 102.92

85143

84.69 84.75 83.25

taximum clock frequency (MHz)

1/2 2/2 1/4 2/4 4/4 1/8 2/8 4/8 8/8 5/6
Mumber of (register file) write/read ports (NWP/NRP)

Fig. 9. Propagation time delay for ByoRISC.

in detail in [18]. The testbed processor has been configured for the following
options:

e Support for custom instructions, hardware multiplier (pipelined to 4 stages),
hardware variable shifter, load-store unit for byte, halfword and word data
types.

e Instruction and data memory sizes set to 8KB, respectively.

e Opcode width set to 8.

e 32 general-purpose registers and register address width set to 5.

The exploration procedure has been applied for enabling/disabling full data
forwarding, and for different values of read/write ports (NW P={1, 2, 4, 8}
and NRP={2, 4, 8} with NRP > NWP). Fig. 9 depicts the delay mea-
surements for different numbers of supported read and write ports. The chip
area requirements are shown in Fig. 10. In the latter figure, only the data
values obtained with forwarding configured are shown. The number of execu-
tion pipeline stages has been set to 2. An indicative combination of write/read
ports (5/6) has been actually used for an incarnation of ByoRISC in an em-
bedded system for image processing applications (Floyd-Steinberg dithering,
halftone image packing/unpacking and encyrption/decryption with the XTEA
block cipher) [13].

Studying the data visualized by Fig. 10 it is derived that the number of read-
/write ports escalates the required area for the selected Virtex-4 FPGA device
by about an order of magnitude, and more specifically from 6% to 50% of the
device resources. Also, the use of full data forwarding reduces the maximum
achievable clock frequency by 17.9% on average, compared to the correspond-
ing cases without forwarding. Since the power budget of the FPGA device is
limited, a full data forwarding solution for a RISC processor able to execute
MIMO instructions can be used. MIMO instructions can provide many-fold
acceleration of applications: more than 5 x for some MiBench [19] applications

15

Characterization of area requirements
for Xilinx XC4VLX25-FF668-10

3500
no forwarding —+—

forwarding —— 2957
3000 [both EEEERA

2500

2000

1500

Chip area (contribution of: slices)

9
100025

500

Chip area (contribution of: BRAMS)

o b R B 1 : ;
12 2/2 1/4 2/4 414 178 2/8 4/8 8/8 5/6
Mumber of (register file) write/read ports (NWP/MNRP)

Fig. 10. Chip area for ByoRISC.

as discussed in [20]; for the image processing application set mentioned in this
text, up to 9 x cycle acceleration has been observed with a maximum re-
quirement of 5 write and 6 read ports. Comparing the extreme configurations
(1/2 vs. 8/8) with forwarding enabled, a moderate performance degradation of
14.75% on the maximum clock frequency is observed. For the extreme config-
uration (8/8), the use of forwarding has a net effect of about 16.6% compared
to its absence for the same number of write/read ports.

5.8 Effect of the data forwarding mechanisms on application speedup

In order to evaluate the performance of the ByoRISC architecture on realistic
applications, an image processing flow (IPF) has been used. The IPF which
is shown in Fig. 11 processing 256-level greyscale images, comprises of five
application kernels:

fsdither: Floyd-Steinberg dithering by error diffusion to a bilevel image
htpack: halftone image packer for eightfold lossless compression of a bilevel
image

htunpack: the corresponding unpacking/expanding application to unpack
zteaenc and zteadec: XTEA encryption and decryption [21], respectively

With the help of the YARDstick toolset [22], application analysis and cus-
tom instruction (CI) generation and selection have been applied on the IPF
application set. First, the critical basic blocks of the applications have been
identified (Table 2). CI generation has been applied for identifying MIMO
subgraphs, by evaluating a search graph representation for basic blocks. In
the process of CI generation, control-transfer instructions have been excluded.
A greedy selector for the maximizing the cycle-gain priority metric has been

16

Floyd-Steinberg
dithering (fsdither)

halftone packing
(htpack)

halftone unpacking
(htunpack)

XTEA encoding
{xteaenc)

XTEA decoding
{xteadec)

Fig. 11. An image processing flow comprising of dithering, data packing/unpacking
and XTEA encryption/decryption.

used.

Table 2

‘Hot’ basic blocks for some of the IPF applications running on 64 x 64 test images
(for NPIPE = 2).

Estimated

Application Instructions dynamic % Of.
application
cycles
fsdither.5 59 237568 85.19
fsdither.2 10 40960 14.69
htpack.2 80 40448 99.98
htunpack.2 88 44032 99.98
xteaenc.2 44 638976 95.63
xteadec.2 44 638976 94.76

A summary of the identified CIs is given in Table 3. It can be seen that
N;/N, = 8/8 write/read ports suffice for a 99.5% coverage of the maximum
theoretical application acceleration assuming unlimited number of register file
ports and operation issue slots. However, when comparing the 8/8 and 8/4
cases it is seen that this difference is not negligible (about 17.6%). A speed
improvement of 5.2x is expected over the application set based on the es-

timations (averaging the results of column ‘Increm. speedup’ over the three
applications of IPF) made by YARDstick.

Table 3
CI characteristics. N, refers to the number of constants in a CI. ‘MAU’ refers to
the area occupation of a 32x32-bit multiplier producing a 64-bit result.

Cyec. Increm. HW Area
cl Ni/No/Ne gain speedup SW eye. cyc. (MAU)

fsdither0 5/2/9 180224 2.69 57 13 4.56
fsditherl 3/2/2 32768 3.87 9 1 0.18
htpack0 3/2/14 35328 7.25 78 9 1.10
htunpackO | 5/0/12 35328 7.25 81 9 1.33
xteaencO 6/5/7 540672 4.55 38 5 0.83
xteadecO 6/5/7 540672 4.55 38 5 0.78

In order to evaluate the effect on the full register bypassing mechanisms on the
single-issue width ByoRISC ASIP (Application-Specific Instruction-set Pro-
cessor), targeting the IPF applications, its cycle-by-cycle behavior has been
simulated based on an ArchC [23] model of the processor. A set of measure-
ments was obtained while setting the number of pipeline stages to the values

17

Table 4

Cycle (NPIPE = 1..3) and timing speedups (NPIPE = 2) for the ByoRISC
processor for the baseline configuration (Baseline), with custom instructions and
partial (CI + partial bypassing) or full bypassing (CI + full bypassing).

| fsdither [htpack [htunpack | xteaenc | xteadec

Cycle measurements for NPIPE=1
Baseline 18219695 | 3079201 3464131 40697881 | 38731798
CI + partial bypassing 6818325 655375 688143 20774934 18808854
CI + full bypassing 6031893 589839 589839 14483478 | 12517398
Speedup (Baseline vs CI + partial bypassing) 2.67 4.70 5.03 1.96 2.06
Speedup (Baseline vs CI + full bypassing) 3.02 5.22 5.87 2.81 3.09
% difference due to bypassing 11.53 10.00 14.29 30.28 33.45

Cycle measurements for NPIPE=2
Baseline 15990089 | 3200981 3585911 39616537 | 37650454
CI + partial bypassing 7080981 655375 688143 20742166 | 18776086
CI + full bypassing 6294549 589839 589839 14450710 12484630
Speedup (Baseline vs CI + partial bypassing) 2.26 4.88 5.21 1.91 2.01
Speedup (Baseline vs CI + full bypassing) 2.54 5.43 6.08 2.74 3.02
% difference due to bypassing 11.11 10.00 14.29 30.33 33.51

Timing measurements (in ps) for NPIPE=2

Baseline 187.24 37.48 41.99 463.91 440.89
CI + partial bypassing 80.65 7.46 7.84 236.25 213.86
CI + full bypassing 81.58 7.64 7.64 187.28 161.8
Speedup (Baseline vs CI + partial bypassing) 2.32 5.02 5.36 1.96 2.06
Speedup (Baseline vs CI + full bypassing) 2.30 4.90 5.49 2.48 2.72
% difference due to bypassing -1.15 -2.41 2.47 20.73 24.34

Cycle measurements for NPIPE=3
Baseline 16906211 | 3617673 4002603 40763417 | 38797334
CI + partial bypassing 6032917 491535 524303 19791894 | 17825814
CI + full bypassing 5246485 425999 425999 13500438 11534358
Speedup (Baseline vs CI + partial bypassing) 2.80 7.36 7.63 2.06 2.18
Speedup (Baseline vs CI + full bypassing) 3.22 8.49 9.40 3.02 3.36
% difference due to bypassing 13.04 13.33 18.75 31.79 35.29

NPIPE = 1..3. Table 4 summarizes the number of cycles, and percentage
differences of cycle speedups for three distinct cases:

(1) Baseline processor (NWP=1,NRP=2) with full bypassing

(2) Custom instructions and partial bypassing (bypassing organization of the
baseline processor)

(3) Custom instructions and full bypassing

Especially for the case of NPIPFE = 2, the processor has been synthesized on
Xilinx ISE Webpack 9.2 and its timing characteristics (minimum clock period)
have been measured. For this case, along with the cycle speedups, speedups
and associated percentage differences taking into account the minimum clock
period that can be achieved are shown in Table 4. The clock period estimates
are shown in Fig. 9.

The results reveal cycle speedups of 2.5x (fsdither, NPIPE = 2) to 9.44x
(htunpack, NPIPE = 3) and 3.9x (NPIPE = 1) to 5.5x (NPIPE = 3) in
average. For the specific case of NPIPE = 2 for which the ByoRISC processor
has been successfully tested in both simulation and FPGA environments, the
minimum clock period is taken into account to obtain the execution time
estimates. In this case, the maximum average speedups is only reduced by
9.65% in order to obtain a 3.58 x speedup over the “baseline” case when using

18

custom instructions and full forwarding.

Multi-cycle register files could be used in order to sequentially pass register
file write operands, and to permit the reading of values in chunks of one or
two read values for the same multi-input/multi-output custom instruction.
The timing overhead of having 2 read/1 write port register file and using
partial forwarding to 8 read/8 write multi-port register file and support of full
forwarding (which is the maximum supported by the ByoRISC architecture)
is 32.8% when NPIPE = 2. In all cases examined (for different NPIPE
values), the speedup due to the multi-operand custom instructions ranges from
3.3x to 5.5x for the test applications, thus in order to obtain the execution
time speedups these values would have to be reduced by about one third.
This is a pessimistic view due to two distinct reasons. Firstly, there is an
additional cycle overhead to the baseline case due to always having multiple
cycles for reading and writing multiple operands. Secondly, opportunities for
data forwarding will always be missed due to pipeline bubbles introduced by
stalling the pipeline at the instruction decode stage for writing or reading
values to or from the multi-cycle limited-port register file.

6 Conclusions

In this paper, the application of a scalable register bypassing scheme on con-
temporary soft-core processors has been examined in detail. The Scalable
Register Bypass (SRB) architecture can be configured for different number
of general-purpose register file read (NRP) and write (NW P) ports and can
be incorporated in a wide range of pipeline processors with a number of ex-
ecution pipeline stages (NPIPE) subject to quite generic assumptions. An
RT-level specification, fully describing the SRB, has been developed and is
described herein. Its viability has been proved, for contemporary FPGA so-
lutions by assessment of logic synthesis estimates based on the RTL VHDL
description of the SRB bypass network as well as the description of a complete
processor using scaled forms of the SRB. For the examined case of an image
processing application set with average speedup up to 5.5x, the negative ef-
fect of applying full forwarding on the maximum clock frequency of a Virtex-4
FPGA device when using 8 read and 8 write ports is less than 15%.

References

[1] ARC cores.
URL http://www.arc.com

19

[2] R. Gonzalez, Xtensa: A configurable and extensible processor, IEEE Micro
20 (2) (2000) 60-70.

[3] Gaisler research.
URL http://www.gaisler.com

[4] Xilinx home page.
URL http://www.xilinx.com

[5] Altera Nios II home page.
URL http://www.altera.com/products/ip/processors/nios2/

[6] A. Abnous, N. Bagherzadeh, Pipelining and bypassing in a VLIW processor,
IEEE Transactions on Parallel and Distributed Systems 5 (6) (1994) 658-664.

[7] S. A. Trainis, Modelling the hardware cost of full register bypassing in a multiple
instruction issue processor, Journal of Systems Architecture 43 (1997) 39-46.

[8] K. Fan, N. Clark, M. Chu, K. V. Manjunath, R. Ravindran, M. Smelyanskiy,
S. Mahlke, Systematic register bypass customization for application-specific
processors, in: Proceedings of the 14th International Conference on Application-
specific Systems, Architectures and Processors, The Hague, The Netherlands,
2003, pp. 64-74.

[9] A. Shrivastava, S. Park, E. Earlie, N. Dutt, A. Nicolau, Y. Paek, Retargetable
pipeline hazard detection for partially bypassed processors, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 26 (10).

[10] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, R. Zafalon, Low-power data
forwarding for VLIW embedded architectures, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 10 (5) (2002) 614-622.

[11] N. Goel, A. Kumar, P. R. Panda, Power reduction in VLIW processor with
compiler driven bypass network, in: Proceedings of the 20th International
Conference on VLSI Design (VLSI Design 2007), Sixth International Conference
on Embedded Systems (ICES 2007), Bangalore, India, 2007, pp. 233-238.

[12] A. S. Terechko, Clustered VLIW architectures: a quantitative approach,
Ph.d. thesis, Technical University of Eindhoven, Eindhoven, The Netherlands
(February 2007).

[13] N. Kavvadias, S. Nikolaidis, The ByoRISC configurable processor family, in:
accepted for publication in the proceedings of the IFIP/IEEE VLSI-SoC 2008
- International Conference on Very Large Scale Integration, Rhodes Island,
Greece, 2008.

[14] L. Pozzi, K. Atasu, P. Ienne, Exact and approximate algorithms for the
extension of embedded processor instruction sets, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 25 (7) (2006) 1209—
1229.

[15] J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach,
2nd Edition, Morgan Kaufmann Publishers, San Francisco, CA, 1996.

20

[16] D. E. Knuth, MMIXware: A RISC Computer for the Third Millennium,
Springer-Verlag, 1999.
URL http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html

[17] ASIPMeister application specific instruction-set processor design system.
URL http://www.eda-meister.org/asip-meister/

[18] M. A. R. Saghir, R. Naous, A configurable multi-ported register file architecture
for soft core processors, in: Proceedings of the 2007 International Workshop on
Applied Reconfigurable Computing (ARC 2007), Mangaratiba, Rio de Janeiro,
Brazil, 2007, pp. 14-25.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B.
Brown, MiBench: A free, commercially representative embedded benchmark
suite, in: Proceedings of the 4th annual IEEE International Workshop on
Workload Characterization, Austin, Texas, USA, 2001.

[20] N. Kavvadias, S. Nikolaidis, A flexible instruction generation framework
for extending embedded processors, in: Proceedings of the 13th IEEE
Mediterranean Electrotechnical Conference (MELECON 2006), Benalmadena
(Malaga), Spain, 2006, pp. 125-128.

[21] R. M. Needham, D. J. Wheeler, TEA extensions, Technical report, Computer
Laboratory, University of Cambridge (Oct. 1997).

[22] N. Kavvadias, S. Nikolaidis, YARDstick: Automation tool for custom processor
development, in: presented at the University Booth of the Design, Automation
and Test in Europe Conf., Nice, France, 2007.

[23] The ArchC resource center.
URL http://www.archc.org

21

