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Abstract

A recent approach to platform-based design involves

the use of extensible processors, offering architecture cus-

tomization possibilities. Part of the designer responsibilities

is the domain-specific extension of the baseline processor to

fit customer requirements. Key issues of this process are the

automated application analysis and candidate instruction

identification/selection for implementation as application-

specific functional units (AFUs). In this paper, a design

approach that encapsulates automated workload character-

ization and instruction generation is utilized for extending

processors to efficiently support embedded application sets.

The method used for instruction generation is a highly pa-

rameterized adaptation of the MaxMISO technique, which

allows for fast design space exploration. It is proven that

only a small number of AFUs are needed in order to support

the algorithms of interest (MPEG-4 encoding kernels) and

that it is possible to achieve 2× to 3.5× performance im-

provements although further possibilities such as subword

parallelization are not currently regarded.

1. Introduction

In the development of processors for consumer applica-

tions, closely matched design of instruction sets and micro-

architectures is required, in respect to the application bench-

marks, while being subject to several constraints. These

constraints stem out of diverse and often conflicting require-

ments such as low power consumption, performance in a

given application domain, code size and overall system cost

[21].

The challenge of delivering the optimum balance be-

tween efficiency and flexibility can be met with the uti-

lization of customizable processors. Most commercial of-

ferings fall in the category of configurable and extensible

processors [1],[19]. Configurability lies in tuning architec-

ture parameters of synthesizable cores [2] or interfacing to

application accelerators through the local bus. Extensibility

of a processor usually refers to tightly-coupled modifica-

tions obtained by adding single-, multi-cycle or pipelined

versions of complex instructions and the introduction of

their associated functional units at the execution stage(s) of

the processor pipeline.

The designer freedom in such configuration/extension

scenarios has to be exploited for advantageous domain-

specific specialization. While it has been argued that com-

plete application characterization is a demand for inhibiting

mismatches between expected and delivered performance

[23], the established approach follows a two-level strategy

of focusing on aggressively optimizing the application ker-

nels and at a subsequent phase examining its effect on the

entire application. For this reason, MediaBenchII [18], the

awaited update to the popular MediaBench benchmark suite

[24], will incorporate kernels such as motion estimation

(key procedure in video coding standards) and wavelet fil-

ters.

In this paper, an application analysis and custom instruc-

tion generation prototype framework is presented, based

on the MachSUIF compiler infrastructure [3] and a pa-

rameterizable instruction generation engine. Its features

include support of two RISC-like instruction sets, built-

in area and delay early estimators for the AFUs, clas-

sic compiler optimization passes, arithmetic optimizations,

and a highly-controllable version of the MaxMISO in-

struction generation algorithm [27] that enables interest-

ing multi-dimensional design space exploration possibili-

ties. This framework has been utilized for identifying com-

mon instruction-set extensions for popular video encoding

kernels.

The rest of this paper is organized as follows. Related

work is summarized in Section 2. The instruction genera-

tion approach for customizing embedded ASIPs is detailed

in Section 3. Section 4 discusses the application of the pro-

posed approach on an MPEG-4 compliant shape encoder as

a case study, and in Section 5 it is further applied on a set



of block-matching motion estimation algorithms. Finally,

Section 6 summarizes the paper.

2. Related work

Methodical research efforts on application-specific ex-

tensions regard automating methods to explore the archi-

tecture design space [16],[30],[17],[28],[20]. A few open

instruction generation frameworks that can be directly eval-

uated for the instruction-set extensions exist [16],[4]. An

advantage of their approach is the usage of a pattern file

format for storing, manipulating and exchanging instruc-

tion patterns. Some issues with the Pattlib approach re-

gard the significant efforts for adapting the GCC compiler to

emit information in ”pattlib” format, and that the intermedi-

ate representation (IR) for their selected backend (SPARC

V8) is not architecture-neutral. A disciplined approach to

custom instruction generation for extensible processors is

found in [20] where the Xtensa processor is augmented with

application-specific instructions that may combine VLIW,

SIMD or fused (chained) RTL operations. However, it is

strongly oriented towards Xtensa, applying strict restric-

tions on the design space since it considers only 2-input

MISO single-cycle instruction candidates. In addition to

that, although they have included MPEG-4 video encoding

as one of their benchmarks, details on the specifics for the

motion estimation algorithms are omitted.

Close to our aims but from an empirical viewpoint, re-

cent ARM architectures (ARM9 and later) can be option-

ally augmented with a low-power programmable coproces-

sor named MOVE [9], for accelerating the SAD operation

in motion estimation. The plain SAD calculation without

regarding data transfers requires 2 or 3 cycles given the op-

erating mode. However, due to the effect of the limited

bandwidth for accessing the pixel values, a 2× speedup for

MPEG-4 encoding over a software implementation is re-

ported, although their use of SIMD instructions implies an

8-fold theoretical speedup limit (assuming transparent data

updates for the pixel block buffer).

3. Custom instruction generation procedure

It is often at early stages in processor design, that the

compilers and simulators for the design space of applica-

ble processor architectures are not available. As a common

estimation platform, we use the MachSUIF IR, which repre-

sents a generic RISC ISA named SUIFvm. Dynamic char-

acterization is performed using the C backend m2c available

in the MachSUIF distribution.

The instruction generation flow, which is shown in

Fig. 1, is an enhancement of the work in [22]. On Step 1, the

input C code for the application is processed by the SUIF

Figure 1. Application analysis and parame

terised instruction generation flow.

frontend, to generate AST description with SUIF nodes for

the application [5]. On Step 2, the resulted representation

is fed to the s2m pass to emit SUIFvm assembly-like IR.

The IR code is unscheduled while complete procedure en-

try and exit sequences have not been inserted at this stage,

since stack frame layout is highly processor dependent. It

is not meaningful to seek useful instruction extensions in

stack manipulation code since in this case false dependen-

cies within the data flow graphs of each basic block are cre-

ated [17]. Step 3 performs architecture-independent opti-

mizations on the IR most of them detailed in Table 1.

On Step 4, specific static and dynamic profiling informa-

tion for the input application is gathered with the help of a

set of analysis passes, accepting SUIFvm IR in CFG form.

Table 1 gives compact descriptions of analysis and transfor-

mation passes that have been added to MachSUIF.

The instruction generation process takes place on Step

5. The instruction identification and generation engine

currently implements the MaxMISO (maximal multiple-

input single-output) algorithm [27], which identifies the

maximal non-overlapping connected subgraphs of the data-

dependence directed-acyclic graph (DAG) that produce a

single computation result. In its original form, the only ap-



Table 1. Custom analysis and transformation
passes for MachSUIF.

Pass name Description
Pass

type

dagconstruct Construct DDGs for each basic block Analysis

instrmix Generates static instruction mix Analysis

liveanalysis Def-use chains/liveness analysis Analysis

using the MachSUIF cfa library

loopstr Natural loop analysis using cfa Analysis

m2c bb GNU patch and Perl scripts to correct Analysis

and instrument m2c output

buildcg Call-graph constructor Analysis

lcse Local CSE optimization [6] Optim.

if conversion If-conversion optimization [6] Optim.

cplx locate Locates portions of SUIFvm code that Optim.

can be replaced by uses of SUIFvm

instructions: abs, min, max

strength reduct Simple operator strength reduction Optim.

for multiplication and division

plicable constraints regard the maximum number of input

operands that can be delivered to the AFU, but in our im-

plementation is enhanced in order to be more suitable for

performance tradeoff analysis. These MaxMISO parame-

ters include:

1) The maximum number of primitive instruction nodes

to be included in the MaxMISO.

2) The establishment of two types of node constraints that

can be applied to any instruction class:

a) Type-A or boundary-node constraint: Applying

this constraint, prohibits growing an instruction

cluster beyond the specified instruction. It has

been observed that its application on data trans-

fer instructions (load, store, memory-to-memory

copy), forces the generation of complex address-

ing modes. This procedure automates a tradi-

tionally ad-hoc portion of the ASIP design flow,

which is the identification of the most beneficial

addressing modes for the processor’s data trans-

fer instructions.

b) Type-B or node-inclusion constraint: A con-

straint of this type will not permit the inclusion of

the specified instruction in the MaxMISO under

build. It is usually applied to control-transfer in-

structions (cti) such as conditional/unconditional

branch (cbr/ubr) and call/return. In the majority

of extensible processors, the end-user is not per-

mitted to alter the control transfer mechanisms

i.e. to add complex instructions to the origi-

nal ISA that modify the instruction fetch path,

since its effect to the processor cycle time is less

predictable than in the case that instruction ex-

tensions reside solely on the execution pipeline

stage(s) of the processor.

3) Applying a limit on the maximum number of hard-

ware cycles that is required for instruction execution.

Single-cycle instructions require only minor modifica-

tions to the main instruction decode logic while multi-

cycle instructions demand additional FSM control and

possibly user-defined state registers [17],[12].

Additional features of our MaxMISO implementation in-

clude:

1) Support for SUIFrm (SUIF real machine), a close

backend ISA to the SUIFvm IR that allows register al-

location and code generation.

2) Single constant multiplication optimization according

to Bernstein’s algorithm [10],[13] but with exact delay

costs instead of cycle costs.

3) Multi-operand addition optimizations [29],[11] that

currently are applied after the main instruction gener-

ation procedure.

4. Motivational example: MPEG-4 context-

based shape encoding

As demonstration application, we have selected a

context-based shape encoder for MPEG-4 [8],[7]. This en-

coder allows for lossy decisions in the encoding of shape

information, and is controlled by a motion vector predic-

tion related (motion th) and a lossy compression (alpha th)

parameter.

For the 16 run-cases defined by the following parame-

ter space: {alpha th, motion th}={0, 32, 64, 256} it was

derived that the most performance-critical basic blocks are

BB #40 and #41 of the find vects procedure (referred to as

BB1 and BB2 in Table 2 respectively) where SAD com-

putation takes place. Table 2 summarizes statistics for the

generated custom instructions under 3 different constraint

scenarios and for number of inputs given in (”#inputs” col-

umn). In column ”#MaxMISO num./size”, the number of

static occurrences of custom instructions and their average

size in number of primitive instructions are given. It is de-

duced that the constraint on the number of inputs has a dra-

matic impact on the size of the generated MaxMISO. The

achievable speedups range from 1.07 to 3.50, the latter for

the case with no restriction on the number of inputs. This

case can only be realized with the use of state registers that

significantly reduce the demand of input operands from the

register file.



Fig. 2(a) shows the data-dependence graph of the maxi-

mal speedup MaxMISO identified in BB1 under node con-

straints: {Type-A/Type-B} = {str/cal}. Area and delay

metrics in Fig. 2 are normalized to the values for a 32×32-

bit single-cycle multiplier returning a 64-bit result (not trun-

cated). By observation of the data flow graph in Fig. 2(a) we

can extract some important remarks:

1) There exist 3 different instances of multi-operand ad-

dition with 3-, 4-, and 5- input operators, while larger

addition structures could be devised by collapsing con-

stant multiplications in the DFG. We have charac-

terized multi-operand adders based on carry-save n:2

compressors, from a public VHDL library [11].

2) There is no variable-by-variable multiplication in-

volved, but only multiplications-by-constant, where

this constant is the picture width. In case a set of con-

stants has to be supported, multiple constant multipli-

ers should be used instead.

3) The 2 memory load operations (lod) do not corre-

spond to zero-successor nodes of the DFG. Gener-

ally, load/store instructions infer a node-inclusion con-

straint, if the corresponding AFUs are not connected

through parallel paths to the data memory.

4) An ILP (instruction-level parallelism) of only 1.6 is

calculated for the DFG of Fig. 2(a) and of 2.18 for

a 4-way processor configuration simulated with Sim-

pleScalar 3.0d [15] for the entire application. It can be

argued that low ILP, privileges architectures that ex-

ploit chained against VLIW operations. In contrast to

VLIW architectures issuing simple independent oper-

ations each one occupying an instruction slot, proces-

sors with chained instruction extensions, exploit de-

pendent operations. Notably, media-centric applica-

tions such as MPEG-4 visual (versions 1 and 2), and

H.264/AVC have respectively low ILP of about 2 in

average for both the encoding and decoding applica-

tions [18].

The final AFU hardware (Fig. 2(b)) for the MaxMISO of

Fig. 2(a) employs both multi-operand addition and constant

multiplication optimizations in addition to the manual intro-

duction of state registers, motivated by analysis of register

liveness results. The maximum speedup can be approached

with 8 state registers as can be seen in Fig. 2(b). Also, se-

lection of operator bitwidths has been performed with nodes

sub and abs operating on 8-bit and the remainder nodes on

16-bit quantities. Overall, automated and manual optimiza-

tions result in 85% and 40% reduction against the unop-

timized hardware for the derived MaxMISO for area and

delay metrics, respectively.

Table 2. Detailed statistics for the generated
custom instructions.

Basic

block
#inputs

Constr.

Type A/B

MaxMISO

num./size

Rel.

%cycles
Speedup

BB1 2 str/cal 5/2 73.68 1.36

BB2 2 str/cal 2/2

BB1 2 str,lod/cal 5/2 73.68 1.36

BB2 2 str,lod/cal 2/2

BB1 2 str,lod/cti 5/2 86.61 1.15

BB2 2 str,lod/cti 2/2

BB1 4 str/cal 6/2.33 47.37 2.11

BB2 4 str/cal 2/3

BB1 4 str,lod/cal 6/2.67 47.37 2.11

BB2 4 str,lod/cal 2/3

BB1 4 str,lod/cti 6/2.67 65.22 1.53

BB2 4 str,lod/cti 2/2.5

BB1 ∞ str/cal 1/16 28.57 3.50

BB2 ∞ str/cal 1/6

BB1 ∞ str,lod/cal 3/4.67 43.61 2.29

BB2 ∞ str,lod/cal 2/3

BB1 ∞ str,lod/cti 3/4.67 48.78 2.05

BB2 ∞ str,lod/cti 2/3

5. Instruction extension generation for a mo-

tion estimation stressmark

At this point, we will evaluate the proposed approach for

instruction-set extension of block-matching motion estima-

tion algorithms, which are used in MPEG video compres-

sion systems. Table 3 presents the algorithmic kernels un-

der investigation [26]. From left to right, the abbreviation,

a short description and the number of executed instructions

for processing a 10-frame sequence are given.

5.1. Design space exploration and tradeoff analysis

As a first task in tradeoff analysis, we identify the maxi-

mum performance increase that can be achieved by adding

support for MaxMISO instruction clusters to the base mi-

croarchitecture. In Fig. 3, normalized execution cycles are

plotted against the maximum number of inputs for given

cycle constraints for the average case of all kernels. We

can see that for up to 2-input instructions, a 2× speedup is

expected, while for 4-input instructions it increases to 2.5

and for the asymptotical case of unconstrained number of

inputs that could be approached by coarse-grain reconfig-

urable hardware, a theoretical maximum of 3.5 is observed.

It should be noted, that bitwidth optimizations have not

been considered but a number of algorithms for bitwidth

analysis [14],[25] are currently under study for extending

our framework. Last, it appears that constraining the num-

ber of cycles per instruction does not affect performance in

terms of execution cycles for a small to moderate number

of inputs.



(a) Initial DFG. (b) Utilization of multi-operand addition,

constant multiplication and state registers.

Figure 2. Hardware optimization for the

MaxMISO identified in find vects.40.

Figure 3. Normalized execution cycles for
the average case of motion estimation algo

rithms.

At this point, we restrict our interest to the critical ba-

sic blocks of the examined MPEG-4 kernels, and to custom

instructions of up to four input operands. It has been de-

rived that significant performance increase can be achieved

with only three additional functional units for supporting

the shape encoder and a variety of motion estimation al-

gorithms. DFG views for the two AFUs extracted from

the stressmark are given in Fig. 4. Also, as in Section 4,

arithmetic optimizations have been applied. The AFU in

Fig. 4(a) implements the motion compensation task. The

AFUs in Fig. 2(b), 4(a), and 4(b), are the suggested archi-

tectural extensions for the examined video encoding kernels

that could be added to typical embedded processors, media-

processing ASIPs or as custom logic to configurable proces-

sors already in the market (Altera Nios-II, ARC, Xtensa).

Table 3. Summary of the motion estimation
algorithms.

Abbrev. Algorithm description Exec. instr.

fs Full-search 524006501

ofs New full search 85480757

3ss Three-step search 66407224

4ss Four-step search 55404110

n3ss New three-step search 67789322

bbgds Block-based gradient 47494185

descent search

coher Region-based optical flow 58004136

motion estimation

liu Full-search with 4:1 110970080

alternate pel subsampling

pfs Partial distortion full search 156713876

ucbds Unrestricted center-biased 53705554

diamond search algorithm

6. Conclusions

In this paper, an application analysis and instruction gen-

eration flow is used for automatically identifying beneficial

instruction-set extensions of embedded processors. For this

reason, a prototype instruction generation engine allowing

multi-dimensional design space explorations of MaxMISO-

generated custom instructions has been implemented. We

have performed automated explorations regarding the max-

imum number of input operands, instruction latency, as well

as node-inclusion and boundary-node constraints, constant

multiplication and multi-operand addition in the search for

optimal custom instructions and their resulting AFUs. It is

concluded that only three AFUs are needed to accelerate

a variety of motion-estimation related algorithms up to 3.5

times over the baseline processor.
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