Automated synthesis of FSMD-based accelerators for hardwarcompilation

Nikolaos Kavvadias Kostas Masselos
Ajax Compilers Department of Computer Science and Technology
Athens, Greece University of Peloponnese
Email: nikos@nkavvadias.com Tripoli, Greece

Email: kmas@uop.gr

Abstract—In this work we extend the FSMD (Finite-State perfectly nested constant-bound loops. GAUT is incapable
Machine with Datapath) model to encompass synchronous of handling non-static loops. SPARK only handles loops
memory accesses, intermodule communication and hardware- it fixed constant iteration counts and assumes that all

optimizing transformations. A lightweight typed assembly . . .
language, N-Address Code (NAC), is used as a designer- data is transferred to the chip before the computation

friendly representation of FSMDs, simplifying the adaptation Starts, rendering some designs infeasible. C-to-Vertogni
of hardware synthesis with existing frontends. LLVM ° Verilog backend, however presents limitations in ac-

The quality (computation time, chip area) of the generated cessing arrays within functions. TransC supports stregmin
FSMDs has been evaluated on modern FPGAs. Our approach .,nqirycts for data exchange and process synchronization,
overcomes the C code limitations of four HLS tools while th h tandard C truct
maintaining a good speed/area balance. rou.g : non-standar construc S'.

Existing approaches have certain drawbacks: a) most
I. INTRODUCTION AND RELATED WORK frontends QOnnot emit self-contained FSMD specifications;
b) mandating the use of code templates to detect memory

The annual increase of chip complexity is 58%, while accesses and intermodule communication and ¢) succumbing

Zu(rjnan _deggners pro(cjiucywty mcrsasg IS I!m'te? to Ql.ogol to vendor and technology dependence.
rastic increase in designer productivity is only possi In this paper, NAC [2] serves as both a compiler IR

through the adoption of methodologies and tools that rais?ind natural FSMD specification. To support this, a frontend

the design abstraction level, ingeniously hiding low-leve from GIMPLE dumps to NAC is used throughout the text.

tn_ne—consummg, error-prone deta_||s. EDA methOdOIOQES_aRelevant RTL facets to memory accesses, hierarchical mod-
High-Level Synthesis (HLS) [1] aim to generate synthesiz- o5 anq hardware-oriented optimizations such as operatio

able and verifiable RTL (Register Transfer Level) designsyaining, are automatically generated. FSMD synthesis doe
from algorithmic descriptions.

not rely on code templates since it uses a graph-based back-
An overview of FSMD modeling [3] can be found in [4], 4 P grap

h h S dules i end. Further, the generated HDL code is human-readable and
where synchronous communication among modules '_S.noéompletely vendor- and technology-independent. We have
discussed. Cycle-accurate RTL modeling in [5] identifies

impl ted h t of the HercdiLésgh-
the lack of established, timed, RTL models. In a relevanIrnp emented our approach as part of the Hercutéty

. . Yevel synthesis tool.
ASM (Abstract State Machine) formalism [6], data races are y

possible and it is difficult to perform low-level optimizatis [I. NAC (N-ADDRESSCODE)

such as operation chaining. NAC supportsn-inputhn-output mappings, user-defined
Commercial HLS offerings include AutoESLCatapultC, data types (integer, fixed-/floating-point arithmetic), ASS

ImpulseC, Synphony HLS and C-to-Silicon. Attaining bina- form, and scalar, single-dimensional array and streamed

ries for their evaluation was not possible. I/O procedure arguments. NAC statements araddress
LegUp® generates MIPS coprocessors, however in low-gperations or procedure calls. An,¢n)-operation specifies

level, vendor-specific HDL. Publicly accessible tools pro-a mapping from a set of. ordered inputs to a set of.
ducing generic HDL include ROCCCGAUT °, SPARK®, ordered outputs:

C-to-Verilog’ and Trans€ ROCCC targets streamable C ol, ..., om<= operationil, ..., in;
applications on a feed-forward pipeline. It is restricted t where 01, ..., om are them outputs and and 1,
., in the n inputs of the operation. NAC uses the

http://www.itrs.net/reports.html . M " :
P g notions of “globalvar” (a global scalar or array variable),

2http://www.xilinx.com/tools/autoesl.htm

3http://www.legup.org “localvar” (a local variable), “in” (an input argument toeth
“http://www.jacquardcomputing.com/roccc/ given procedure), and “out” (an output argument).
Shitp://www-labsticc.univ-ubs.friwww-gaut/ (2011)

Shttp://mesl.ucsd.edu/spark/ Shttp://iwww.llvm.org

http://www.c-to-verilog.com 1Ohttp://gce.gnu.org/wiki/GIMPLE

8http://cgi.tu-harburg.defti6hm/ Uhttp://www.nkavvadias.com/hercules/

For instance, an addition of two scalar operands is writtgfen srare_1 => e
as:a <= add b, c; . Control-transfer operations include| iatotate next < not (vaitstate.req) next_state <= STATE_I;

if (waitstate_reg = '1') then end if;

explicit conditional and unconditional jumps. An exampfe 0 wsignal next <= mem dout vhen STATE 2 =>
an unconditional jump would béBB5 <= j npun; while nextstate = STATE
conditional jumps always declare both targeB&1, BB2

Figure 1. Wait-state communication for loading data from abIRAM.

<= jnpeq i, 10;. Multi-way branches corresponding
to compound decoding clauses can be easily added. when STATEL = .. * Next_state <= SUPERSTATE 2;
. . = _ . . end if;
The memory access model defines dedicated addreggy(ias = S s when STATE 3 =>
spaces per array. For an indexed load iroC<£ a[i];), a M ((sartready = T2 and TSQrt_0 : entity WORK.isqrt(fsnd)
. grt_start ="0')) then port map (clk, reset,
frontend would generate the following NA®: <= | oad mnext <= meval: isart_start, x_reg, meval,
. I next_state <= STATE 3; isqrt_done, isqrt_ready);
a, i;, while for an indexed storea(i] = b;)itis: a
<= store b, i;, both using the array identifier as an _ o
.. 9 y Figure 2. State-superstate communication of caller andecgitecedure
explicit operand. instances in VHDL.

Procedures are non-atomic operations; (ty) <=

sqrt(x); the square root of an operandis computed. dual-cycle sub-state for performing the load. Fig. 1 illus-

trates its implementation. During the 1st cycleSITATE_1
IIl. EXTENDED FSMDs the memory block is addressed. In the 2nd cycle, the

The FSMD [7] introduces embedded actions within the€duested data are made available thromgm dout and
next state generation logic of an FSM. Our extendeo"’lss"_gr'ed to reglstery_5| gnal . This data can be read from
synchronous FSMD model supports: array input and out"¥si gnal _reg during STATE 2.
put ports, streaming /O, communication with embeddedc. Hierarchical FSMDs
block and distributed LUT memories, design of a latency-
insensitive local interface between caller and callee FSMD

and design of memory interconnects for the FSMD units.

Hierarchical FSMDs define entire systems with caller and
callee CDFGs. A two-state protocol describes proper com-
munication, using a “preparation” state and an “evaludtion
A. Conventions superstate where the entire computation applied by theecall
gSMD is effectively hidden.

The caller FSMD performs computations where new
values are assigned 0 next signals and registered values
Jfre read fromx_reg signals. To avoid the problem of

correspond to the source and sink nodes of the CDFG ltivle sianal dri I d inst d
the given procedure, respectively. One possible optinoizat multiple signal drivers, caflee procedure nstances predu
*_eval data outputs that can be connected to register inputs

is merging the sink state with its immediate predecessors[j hardwiring t ¢ sianal
Input registering is supported although this intent hasdo b yFigr gwi“zgtrg;a_sngxcaﬁl(g(?r? S'<_ isqrt(x):) to an

made exphmtI in NAC. The control interface is simple: integer square rooSTATE. 1 sets up thé sqrt 0 callee
» cik (I): signal from exteral clock instance which readg_reg and produceam eval . In
» reset (1) syljchronous or asynchronqus reset SUPERSTATE_2 control is transferred to the component
. Start' : actlvates. the FSMD.so that in the next cycle, instance of the callee. When the callee instance terminates,
the first computational state is reached i sqrt_ready is raised. Since sqrt_start is kept

* T’eady (O_): the blo(;:k |r;5 rea;]dy to accept d’?eW dlnput low, the generated output data can be transferred torthe
* Uahd. (Q): asserted when the comesponding data outpu}egister via itsm_next input. Control then is handed over
port is streamed-out from the block to STATE 3

« done (0): end of computation for the block
ready signifies only the ability to accept new input (non- D. Streaming ports
streamed) and does not address the status of an output. Streaming suits applications with absence of control flow.
In a prime factorization algorithmp(factor), a streaming
output can be usedut p, to produce successive factors. The
We assume a RAM model with write enable, and separatetreaming port is accessed basedvan i d. Thus,out p is

data input di n) and output out) sharing a common accessed periodically in context of basic bl&B4 as shown
address portr(waddr). A store operation raises write in Fig. 3.

enable rem we) in a given single-cycle state so that data] o

are stored in memory and made available in the subsequeft Operation chaining

state/machine cycle. Operation chaining assigns dependent SSA operations to
Synchronous | oad requires the introduction of a a single control step. Simple means for selective opera-

wai t st at e register. This register assists in devising ation chaining involve merging successive ASAP states. In

The FSMDs are organized as computations allocated int
n+2 states, where is the number of required computational
states. The two overhead stat&,ENTRY and S _EXI T,

B. Communication with embedded memories

Table |

procedure pfactor (in ulé x, out ulé outp) { BENCHMARK DESCRIPTIONS AND LINE STATISTICS
| ocalvar ul6 i, n, tO;
BBl: n <= nov x; i <= ldc 2; BB2 <= jnpun;
Sgg: IBgs, BB EXIT <= jBréEI eBwB,S no o o Bench. | Typé Description C NAC | dot | VHDL]
10 smremn i S84, BES <= jmped (9.9 edgedet| M | Edge detection 35 145 | 873 | 1921
b ot B B8 < float2half C | Convert float-to-half 25 | 71 | 157 | 370
BB_EXI T: nop;} fsme M Motion estimation 65 159 1483 | 2730
half2float C Convert half-to-single 12 32 55 174
icbrt C Integer cubic root 18 36 83 213
; ; oAt ; isqrt C Integer square root 20 28 84 199
Figure 3. NAC code for a prime factorization algorithm. mandel | &Ml Mandelbrot fractal 60 208 | 250 | 639
o matmult | M Matrix mult. 40 94 763 1511
when S 1 3 => sierpinskj C/M| Sierpinski triangle 51 70 300 630
[3next <= 000" reg(1s downto 3); | | when S11 = smwat | M | Smith-Waterman kernel | 68 159 | 753 | 1615
_next <= T y.-reg ownto 4 wane } walsh M 2D Walsh transform 32 71 326 | 704
mZﬁ*‘sﬁ‘_i‘ i;’ S14 :i:::i: :; ugf’féyﬁgiff’lélioiﬁ?‘;‘ i)?) ' yuv2rghg C Color space conv. 27 98 240 679
t5_next <= x_reg - t3_reg; t5_next <= x_next - t3_next;
next _state <= S_1_5; t6_next <= t4_next + t5_next;
when S 1.5 => s 7000 g Cycics mmmm Total Computation Time 50
t6_next <= t4_reg + t5_reg; ‘ Maximum Operating Frequency ‘
= S 1_6; . s 7
rextostate = S (b) VHDL code with chaining. € coo 1
£
(a) VHDL code without chaining. 5 sl 12 2
Figure 4. Chained computations. 5 000 -] r,

. e - 200 E’
successive states, intermediate registers are elimirtated 2 ol 1 i
wiring assignments toc_next signals and reusing them
. = 2000 | 4 3
in the subsequent chained computation, instead of reading EH {0 £
from the storedx_r eg value. To avoid excessive critical 3 w0l 1
paths, a heuristic is defined for disallowing flow-dependent . I [| [| -
multiple occurrences of expensive operators in the same R ton A BRA

newly defined state. In Fig. 4 stat& 1 3 t0 S 1 5

comprise intermediate computations in a mergedl_1 Figure 5. Number of cycles, MOF and TCT (geometric means) for the
State -~ generated FSMDs.

F. High-level optimizations A. Speed measurements

A set of grammatical transformations has been developed 10 @ssess the performance of the generated hardware, the
using TXLI2. As proof-of-concept, matrix flattening and Minimum propagation delayM D), maximum operating
argument globalization are examined. frequency (MOF) and total computauqn timeTICT =

Matrix flattening deals with reducing the dimensions of cvcles X MPD) are evaluated. Four different scheduling
an array fromN to one. This optimization creates multiple SCEnarios have been examined: S1) sequential scheduling,
benefits: addressing, interface and communication simplifiS2) ASAP, S3) S2 with chaining, and S4) S3 with syn-
cations, and direct mapping to physical memory. Argumenfhronous read (block RAM) memories. Such linear com-
globalization replaces multiple copies of a given array byp_lexny schedulers are critical for providing fast compilen
a single-access globalvar array. It prevents exhaustiteg-in Sizable benchmarks. o , , .
connect resources for single-threaded applications.ugiro A 9graphical view of this information, showing relative
a bus-based hardware interface, globalvar arrays can bECT metrics is illustrated in Fig. 5. All designs were
accessed by any procedure. synthesized on the XC6VLX75T Xilinx Virtex-6 device

using Xilinx Webpack ISE 12.3i.
IV. PERFORMANCE OFFSMDs Average TCT is reduced by 47% when comparing S1 to

HercuLeS is used for C-to-VHDL synthesis with the help 53. BRAMs impose a fixed cycle readout latency, which lim-

of a prototype translator from GCC GIMPLE dumps to its this gain to about 36.4%. Computer arithmetic problems
NAC. It extracts Graphviz CDFGs from NAC, which are (float2half, half2float achieve improvements of about<4

then synthesized to vendor-independent self-containdd rrreduction in TCT. Memory-intensive benchmarksatmult,

hardware descriptions. smwat, walsh pre_sgnt_lesser _opportunltle_s fjue to th_e mem-
Computation- (C) and memory-intensive (M) benchmarks®"Y acpesses.ac.:uwty interfering with chaining of arithime

have been selected from public domain. In Table I, for eactpPerations within the same clock cycle. All benchmarks

benchmark (Bench.), a short description is given (column 3)ach|eve MOFs in the range of 120-450MHz.

and its type (C, M or both) is shown in column 2. SourceB

lines are given in columns 4-7, respectively for the user C))
code, NAC, Graphviz CDFGs and VHDL. An aspect of the FPGA area measurements is shown in

Fig. 6. S1 allows for the generation of smaller hardware in
http:/ivww.txl.ca terms of slice LUTs and registers. In S3, LUT and register

Chip area measurements

850

[UTs mmmm Regs j 600 | FIETCULES mmm— CloV e TiansC s GAUT mmmsm SPARK o |

g

800
750 |

700

T

1 500
650 - g 400 |
600 - g
550 - g 300
500 g
450 - 4 200
400 g

100 |
350 g
300
o

Sequential ASAP ASAP+chain. ASAP+chain. +BRAM
Optimization scenario

Chip area in number of LUTs and registers
Maximum Operating Frequency (MHz)

arraysum bitev easter eda fibo ged isat loopl perfecl popcount

;) .)) (a) Maximum operating frequency (MHz).
Figure 6. Chip area in number of LUTs and registers (geometrianne
for the generatEd FSMDs. lHe CULeS/LUTS mmmm CloV/Regs = TGAUTILUTS memmm ¢ Reg ‘

HecuLeS/Regs mmmmm TransC/LUTS mmmmm GAUT/Regs mmmmm
0o L CtoV/ILUTs TransC/Reqs mmmmmm SPARK/LUTs

demand is increased by 90.1% and 59.1%, compared to S1,
a price paid for much higher speed. However, it is more

reasonable to compare S2, S3 and S4 which all apply ASAP
on the NAC SSA form. Registers are reduced by 17.5%

regarding the geometric means for the corresponding metric
among S2 and S4. The tradeoff among S3 and S4 is very
clear; S3 provides better speed performance in exchange for wol
worse LUT and register utilization, where S4 excels.

1000

Number of LUTS/registers

C. Comparison against accessible HLS tools

Quantitative comparisons against other HLS tools were (b) Chip area in number of LUTs and registers.
investigated on a kernel suite (HLSbench) as shown in Fig. 7. Figure 7. HLS tools comparison on HLSbench.

Applications in the HLSbench C suite include array sum,
bit reversal, Easter date calculation, distance appriama and hardware optimizations has been presented. Further, an
iterative Fibonacci series, greatest common divisorgete IR that enables the automated synthesis of FSMD-based
square root, a synthetic loop, perfect number detection an@ccelerators using HercuLeS has been discussed. The pro-
population count. All tools except HercuLeS required bench Posed techniques have been evaluated against four differen
mark source code adaptations. GAUT and SPARK require@ptimization scenarios on a number of benchmarks using
more effort than C-to-Verilog and TransC. Tweaks wereHercuLeS as well as against accessible HLS tools with
applied to absorb third-party tool issues, for instance, CPromising results.
to-Verilog produced simulation-only code. All tools extep
HercuLeS do not support hardware division, due to lack of
both respective component libraries and support for statéll P- Coussy and A. Morawiec, Edsdigh-Level Synthesis: From
multicycling. Algorithm to Digital Circuits Springer, 2008.

[2] N. Kavvadias and K. Masselos, “NAC: A lightweight interme-
HerculeS is the only tool that supports the entire HLS- diate representation for ASIP compilers,”Bmoc. Int. Conf. on

bench application suite; it maintains performance compara Engin. of Reconf. Sys. and Applications (ERSA'LAs Vegas,
ble to SPARK, but less than GAUT. GAUT can effectively Nevada, USA, Jul. 2011, pp. 351-354.

pipeline generated designs for the applications it Support[3] p. p. ChuRTL Hardware Design Using VHDL Wiley, 2006.
(5 out of 12). SF.)ARK has the lowest ANSI C compatlbllltyyw H. Lehr and D. D. Gajski, “Modeling custom hardware in
(4/12). C-to-Verilog and TransC appear to have closel VHDL,” UC Irvine, Tech. Rep. ICS-TR-99-29, Jul. 1999.

matched reSl,mS' supporting 7/12 kerngls. .) [5] R. Domer, A. Gerstlauer, and D. Shin, “Cycle-accurate RTL
HercuLeS is second only to SPARK in chip area; GAUT " mnogeling with multi-cycled and pipelined components;” in

introduces impractical LUT and register demands. Since Proc. of the Int. SoC Design ConfSeoul, Korea, Oct. 2006,
only a limited set of optimizations is currently considered pp. 21-28.

we expect improved performance in future versions througlhié] R. Sinha and H. Patel, “Abstract state machines as an in-
extra optimizations. termediate representation for high-level synthesis,DINTE,
Grenoble, France, Mar. 2011, pp. 1406-1411.

V. CONCLUSION [7] D. D. Gajski and L. Ramachandran, “Introduction to high-level

An extended FSMD model supporting synchronous mod- ;)émzf?ilEig_azsrlgfgg‘;—eﬁ of Computersol. 11, no. 1,
ule communication, embedded memories, streaming outputs, IR '

arraysum bitrev easter eda fibo ged isqt loopl perfect popcount

REFERENCES

