
Automated synthesis of FSMD-based accelerators for hardware compilation

Nikolaos Kavvadias
Ajax Compilers
Athens, Greece

Email: nikos@nkavvadias.com

Kostas Masselos
Department of Computer Science and Technology

University of Peloponnese
Tripoli, Greece

Email: kmas@uop.gr

Abstract—In this work we extend the FSMD (Finite-State
Machine with Datapath) model to encompass synchronous
memory accesses, intermodule communication and hardware-
optimizing transformations. A lightweight typed assembly
language, N-Address Code (NAC), is used as a designer-
friendly representation of FSMDs, simplifying the adaptation
of hardware synthesis with existing frontends.

The quality (computation time, chip area) of the generated
FSMDs has been evaluated on modern FPGAs. Our approach
overcomes the C code limitations of four HLS tools while
maintaining a good speed/area balance.

I. I NTRODUCTION AND RELATED WORK

The annual increase of chip complexity is 58%, while
human designers productivity increase is limited to 21%1.
A drastic increase in designer productivity is only possible
through the adoption of methodologies and tools that raise
the design abstraction level, ingeniously hiding low-level,
time-consuming, error-prone details. EDA methodologies as
High-Level Synthesis (HLS) [1] aim to generate synthesiz-
able and verifiable RTL (Register Transfer Level) designs
from algorithmic descriptions.

An overview of FSMD modeling [3] can be found in [4],
where synchronous communication among modules is not
discussed. Cycle-accurate RTL modeling in [5] identifies
the lack of established, timed, RTL models. In a relevant
ASM (Abstract State Machine) formalism [6], data races are
possible and it is difficult to perform low-level optimizations
such as operation chaining.

Commercial HLS offerings include AutoESL2, CatapultC,
ImpulseC, Synphony HLS and C-to-Silicon. Attaining bina-
ries for their evaluation was not possible.

LegUp3 generates MIPS coprocessors, however in low-
level, vendor-specific HDL. Publicly accessible tools pro-
ducing generic HDL include ROCCC4, GAUT 5, SPARK6,
C-to-Verilog7 and TransC8. ROCCC targets streamable C
applications on a feed-forward pipeline. It is restricted to

1http://www.itrs.net/reports.html
2http://www.xilinx.com/tools/autoesl.htm
3http://www.legup.org
4http://www.jacquardcomputing.com/roccc/
5http://www-labsticc.univ-ubs.fr/www-gaut/ (2011)
6http://mesl.ucsd.edu/spark/
7http://www.c-to-verilog.com
8http://cgi.tu-harburg.de/∼ti6hm/

perfectly nested constant-bound loops. GAUT is incapable
of handling non-static loops. SPARK only handles loops
with fixed constant iteration counts and assumes that all
data is transferred to the chip before the computation
starts, rendering some designs infeasible. C-to-Verilog is an
LLVM 9 Verilog backend, however presents limitations in ac-
cessing arrays within functions. TransC supports streaming
constructs for data exchange and process synchronization,
through non-standard C constructs.

Existing approaches have certain drawbacks: a) most
frontends donnot emit self-contained FSMD specifications;
b) mandating the use of code templates to detect memory
accesses and intermodule communication and c) succumbing
to vendor and technology dependence.

In this paper, NAC [2] serves as both a compiler IR
and natural FSMD specification. To support this, a frontend
from GIMPLE10 dumps to NAC is used throughout the text.
Relevant RTL facets to memory accesses, hierarchical mod-
ules and hardware-oriented optimizations such as operation
chaining, are automatically generated. FSMD synthesis does
not rely on code templates since it uses a graph-based back-
end. Further, the generated HDL code is human-readable and
completely vendor- and technology-independent. We have
implemented our approach as part of the HercuLeS11 high-
level synthesis tool.

II. NAC (N-A DDRESSCODE)

NAC supportsn-input/m-output mappings, user-defined
data types (integer, fixed-/floating-point arithmetic), SSA
form, and scalar, single-dimensional array and streamed
I/O procedure arguments. NAC statements aren-address
operations or procedure calls. An (n,m)-operation specifies
a mapping from a set ofn ordered inputs to a set ofm
ordered outputs:
o1, ..., om <= operation i1, ..., in;
where o1, ..., om are them outputs and andi1,
..., in the n inputs of the operation. NAC uses the
notions of “globalvar” (a global scalar or array variable),
“localvar” (a local variable), “in” (an input argument to the
given procedure), and “out” (an output argument).

9http://www.llvm.org
10http://gcc.gnu.org/wiki/GIMPLE
11http://www.nkavvadias.com/hercules/



For instance, an addition of two scalar operands is written
as:a <= add b, c;. Control-transfer operations include
explicit conditional and unconditional jumps. An example of
an unconditional jump would be:BB5 <= jmpun; while
conditional jumps always declare both targets:BB1, BB2
<= jmpeq i, 10;. Multi-way branches corresponding
to compound decoding clauses can be easily added.

The memory access model defines dedicated address
spaces per array. For an indexed load in C (b = a[i];), a
frontend would generate the following NAC:b <= load
a, i;, while for an indexed store (a[i] = b;) it is: a
<= store b, i;, both using the array identifier as an
explicit operand.

Procedures are non-atomic operations; in(y) <=
sqrt(x); the square root of an operandx is computed.

III. E XTENDED FSMDS

The FSMD [7] introduces embedded actions within the
next state generation logic of an FSM. Our extended
synchronous FSMD model supports: array input and out-
put ports, streaming I/O, communication with embedded
block and distributed LUT memories, design of a latency-
insensitive local interface between caller and callee FSMDs,
and design of memory interconnects for the FSMD units.

A. Conventions

The FSMDs are organized as computations allocated into
n+2 states, wheren is the number of required computational
states. The two overhead states,S_ENTRY and S_EXIT,
correspond to the source and sink nodes of the CDFG of
the given procedure, respectively. One possible optimization
is merging the sink state with its immediate predecessors.
Input registering is supported although this intent has to be
made explicit in NAC. The control interface is simple:

• clk (I): signal from external clock
• reset (I): synchronous or asynchronous reset
• start (I): activates the FSMD so that in the next cycle,

the first computational state is reached
• ready (O): the block is ready to accept new input
• valid (O): asserted when the corresponding data output

port is streamed-out from the block
• done (O): end of computation for the block

ready signifies only the ability to accept new input (non-
streamed) and does not address the status of an output.

B. Communication with embedded memories

We assume a RAM model with write enable, and separate
data input (din) and output (dout) sharing a common
address port (rwaddr). A store operation raises write
enable (mem_we) in a given single-cycle state so that data
are stored in memory and made available in the subsequent
state/machine cycle.

Synchronous load requires the introduction of a
waitstate register. This register assists in devising a

� �
when STATE_1 =>
mem_addr <= index;
waitstate_next <= not (waitstate_reg);
if (waitstate_reg = ’1’) then
mysignal_next <= mem_dout;
next_state <= STATE_2;

� �

� �
else
next_state <= STATE_1;

end if;
when STATE_2 =>
...

� �

Figure 1. Wait-state communication for loading data from a block RAM.
� �
when STATE_1 =>
isqrt_start <= ’1’;
next_state <= SUPERSTATE_2;

when SUPERSTATE_2 =>
if ((isqrt_ready = ’1’) and

(isqrt_start = ’0’)) then
m_next <= m_eval;
next_state <= STATE_3;

� �

� �
else
next_state <= SUPERSTATE_2;

end if;
when STATE_3 =>
...
isqrt_0 : entity WORK.isqrt(fsmd)
port map (clk, reset,
isqrt_start, x_reg, m_eval,
isqrt_done, isqrt_ready);

� �

Figure 2. State-superstate communication of caller and callee procedure
instances in VHDL.

dual-cycle sub-state for performing the load. Fig. 1 illus-
trates its implementation. During the 1st cycle ofSTATE_1
the memory block is addressed. In the 2nd cycle, the
requested data are made available throughmem_dout and
assigned to registermysignal. This data can be read from
mysignal_reg during STATE_2.

C. Hierarchical FSMDs

Hierarchical FSMDs define entire systems with caller and
callee CDFGs. A two-state protocol describes proper com-
munication, using a “preparation” state and an “evaluation”
superstate where the entire computation applied by the callee
FSMD is effectively hidden.

The caller FSMD performs computations where new
values are assigned to⋆_next signals and registered values
are read from⋆_reg signals. To avoid the problem of
multiple signal drivers, callee procedure instances produce
⋆_eval data outputs that can be connected to register inputs
by hardwiring to⋆_next signals.

Fig. 2 illustrates a call ((m) <= isqrt(x);) to an
integer square root.STATE_1 sets up theisqrt_0 callee
instance which readsx_reg and producesm_eval. In
SUPERSTATE_2 control is transferred to the component
instance of the callee. When the callee instance terminates,
isqrt_ready is raised. Sinceisqrt_start is kept
low, the generated output data can be transferred to them

register via itsm_next input. Control then is handed over
to STATE_3.

D. Streaming ports

Streaming suits applications with absence of control flow.
In a prime factorization algorithm (pfactor), a streaming
output can be used,outp, to produce successive factors. The
streaming port is accessed based onvalid. Thus,outp is
accessed periodically in context of basic blockBB4 as shown
in Fig. 3.

E. Operation chaining

Operation chaining assigns dependent SSA operations to
a single control step. Simple means for selective opera-
tion chaining involve merging successive ASAP states. In



� �
procedure pfactor (in u16 x, out u16 outp) {
localvar u16 i, n, t0;

BB1: n <= mov x; i <= ldc 2; BB2 <= jmpun;
BB2: BB3, BB_EXIT <= jmple i, n;
BB3: t0 <= rem n, i; BB4, BB5 <= jmpeq t0, 0;
BB4: n <= div n, i; outp <= mov i; BB3 <= jmpun;
BB5: i <= add i, 1; BB2 <= jmpun;
BB_EXIT: nop;}
� �

Figure 3. NAC code for a prime factorization algorithm.
� �
...
when S_1_3 =>

t3_next <= "000"&x_reg(15 downto 3);
t4_next <= "0"&y_reg(15 downto 1);
next_state <= S_1_4;

when S_1_4 =>
t5_next <= x_reg - t3_reg;
next_state <= S_1_5;

when S_1_5 =>
t6_next <= t4_reg + t5_reg;
next_state <= S_1_6;

� �

(a) VHDL code without chaining.

� �
when S_1_1 =>
...
t3_next <= "000"&x_next(15 downto 3);
t4_next <= "0"&y_next(15 downto 1);
t5_next <= x_next - t3_next;
t6_next <= t4_next + t5_next;
...

� �

(b) VHDL code with chaining.

Figure 4. Chained computations.

successive states, intermediate registers are eliminatedby
wiring assignments to⋆_next signals and reusing them
in the subsequent chained computation, instead of reading
from the stored⋆_reg value. To avoid excessive critical
paths, a heuristic is defined for disallowing flow-dependent
multiple occurrences of expensive operators in the same
newly defined state. In Fig. 4 statesS_1_3 to S_1_5
comprise intermediate computations in a mergedS_1_1
state.

F. High-level optimizations

A set of grammatical transformations has been developed
using TXL12. As proof-of-concept, matrix flattening and
argument globalization are examined.

Matrix flattening deals with reducing the dimensions of
an array fromN to one. This optimization creates multiple
benefits: addressing, interface and communication simplifi-
cations, and direct mapping to physical memory. Argument
globalization replaces multiple copies of a given array by
a single-access globalvar array. It prevents exhausting inter-
connect resources for single-threaded applications. Through
a bus-based hardware interface, globalvar arrays can be
accessed by any procedure.

IV. PERFORMANCE OFFSMDS

HercuLeS is used for C-to-VHDL synthesis with the help
of a prototype translator from GCC GIMPLE dumps to
NAC. It extracts Graphviz CDFGs from NAC, which are
then synthesized to vendor-independent self-contained RTL
hardware descriptions.

Computation- (C) and memory-intensive (M) benchmarks
have been selected from public domain. In Table I, for each
benchmark (Bench.), a short description is given (column 3),
and its type (C, M or both) is shown in column 2. Source
lines are given in columns 4-7, respectively for the user C
code, NAC, Graphviz CDFGs and VHDL.

12http://www.txl.ca

Table I
BENCHMARK DESCRIPTIONS AND LINE STATISTICS.

Bench. Type Description C NAC dot VHDL
edgedet M Edge detection 35 145 873 1921
float2half C Convert float-to-half 25 71 157 370
fsme M Motion estimation 65 159 1483 2730
half2float C Convert half-to-single 12 32 55 174
icbrt C Integer cubic root 18 36 83 213
isqrt C Integer square root 20 28 84 199
mandel C/M Mandelbrot fractal 60 108 259 639
matmult M Matrix mult. 40 94 763 1511
sierpinski C/M Sierpinski triangle 51 70 300 630
smwat M Smith-Waterman kernel 68 159 753 1615
walsh M 2D Walsh transform 32 71 326 704
yuv2rgba C Color space conv. 27 98 240 679

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Sequential ASAP ASAP+chain. ASAP+chain.+BRAM
 100

 150

 200

 250

 300

C
yc

le
s 

(p
la

in
 n

um
be

r)
 a

nd
 T

ot
al

 C
om

pu
ta

tio
n 

T
im

e 
(n

s)

M
ax

im
um

 O
pe

ra
tin

g 
F

re
qu

en
cy

 (
M

H
z)

Optimization scenario

Cycles
Maximum Operating Frequency

Total Computation Time

Figure 5. Number of cycles, MOF and TCT (geometric means) for the
generated FSMDs.

A. Speed measurements

To assess the performance of the generated hardware, the
minimum propagation delay (MPD), maximum operating
frequency (MOF ) and total computation time (TCT =

cycles × MPD) are evaluated. Four different scheduling
scenarios have been examined: S1) sequential scheduling,
S2) ASAP, S3) S2 with chaining, and S4) S3 with syn-
chronous read (block RAM) memories. Such linear com-
plexity schedulers are critical for providing fast compiles on
sizable benchmarks.

A graphical view of this information, showing relative
TCT metrics is illustrated in Fig. 5. All designs were
synthesized on the XC6VLX75T Xilinx Virtex-6 device
using Xilinx Webpack ISE 12.3i.

Average TCT is reduced by 47% when comparing S1 to
S3. BRAMs impose a fixed cycle readout latency, which lim-
its this gain to about 36.4%. Computer arithmetic problems
(float2half, half2float) achieve improvements of about 4×

reduction in TCT. Memory-intensive benchmarks (matmult,
smwat, walsh) present lesser opportunities due to the mem-
ory accesses activity interfering with chaining of arithmetic
operations within the same clock cycle. All benchmarks
achieve MOFs in the range of 120-450MHz.

B. Chip area measurements

An aspect of the FPGA area measurements is shown in
Fig. 6. S1 allows for the generation of smaller hardware in
terms of slice LUTs and registers. In S3, LUT and register



 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

Sequential ASAP ASAP+chain. ASAP+chain.+BRAM

C
hi

p 
ar

ea
 in

 n
um

be
r 

of
 L

U
T

s 
an

d 
re

gi
st

er
s

Optimization scenario

LUTs Regs

Figure 6. Chip area in number of LUTs and registers (geometric mean)
for the generated FSMDs.

demand is increased by 90.1% and 59.1%, compared to S1,
a price paid for much higher speed. However, it is more
reasonable to compare S2, S3 and S4 which all apply ASAP
on the NAC SSA form. Registers are reduced by 17.5%
regarding the geometric means for the corresponding metric
among S2 and S4. The tradeoff among S3 and S4 is very
clear; S3 provides better speed performance in exchange for
worse LUT and register utilization, where S4 excels.

C. Comparison against accessible HLS tools

Quantitative comparisons against other HLS tools were
investigated on a kernel suite (HLSbench) as shown in Fig. 7.

Applications in the HLSbench C suite include array sum,
bit reversal, Easter date calculation, distance approximation,
iterative Fibonacci series, greatest common divisor, integer
square root, a synthetic loop, perfect number detection and
population count. All tools except HercuLeS required bench-
mark source code adaptations. GAUT and SPARK required
more effort than C-to-Verilog and TransC. Tweaks were
applied to absorb third-party tool issues, for instance, C-
to-Verilog produced simulation-only code. All tools except
HercuLeS do not support hardware division, due to lack of
both respective component libraries and support for state
multicycling.

HercuLeS is the only tool that supports the entire HLS-
bench application suite; it maintains performance compara-
ble to SPARK, but less than GAUT. GAUT can effectively
pipeline generated designs for the applications it supports
(5 out of 12). SPARK has the lowest ANSI C compatibility
(4/12). C-to-Verilog and TransC appear to have closely
matched results, supporting 7/12 kernels.

HercuLeS is second only to SPARK in chip area; GAUT
introduces impractical LUT and register demands. Since
only a limited set of optimizations is currently considered,
we expect improved performance in future versions through
extra optimizations.

V. CONCLUSION

An extended FSMD model supporting synchronous mod-
ule communication, embedded memories, streaming outputs,

 0

 100

 200

 300

 400

 500

 600

arraysum bitrev easter eda fibo gcd isqrt loop1 perfect popcount

M
ax

im
um

 O
pe

ra
tin

g 
F

re
qu

en
cy

 (
M

H
z)

HercuLeS CtoV TransC GAUT SPARK

(a) Maximum operating frequency (MHz).

 100

 1000

 10000

arraysum bitrev easter eda fibo gcd isqrt loop1 perfect popcount

N
um

be
r 

of
 L

U
T

s/
re

gi
st

er
s

HercuLeS/LUTs
HercuLeS/Regs

CtoV/LUTs

CtoV/Regs
TransC/LUTs
TransC/Regs

GAUT/LUTs
GAUT/Regs

SPARK/LUTs

SPARK/Regs

(b) Chip area in number of LUTs and registers.

Figure 7. HLS tools comparison on HLSbench.

and hardware optimizations has been presented. Further, an
IR that enables the automated synthesis of FSMD-based
accelerators using HercuLeS has been discussed. The pro-
posed techniques have been evaluated against four different
optimization scenarios on a number of benchmarks using
HercuLeS as well as against accessible HLS tools with
promising results.

REFERENCES

[1] P. Coussy and A. Morawiec, Eds.,High-Level Synthesis: From
Algorithm to Digital Circuits. Springer, 2008.

[2] N. Kavvadias and K. Masselos, “NAC: A lightweight interme-
diate representation for ASIP compilers,” inProc. Int. Conf. on
Engin. of Reconf. Sys. and Applications (ERSA’11), Las Vegas,
Nevada, USA, Jul. 2011, pp. 351–354.

[3] P. P. Chu,RTL Hardware Design Using VHDL. Wiley, 2006.

[4] H. Lehr and D. D. Gajski, “Modeling custom hardware in
VHDL,” UC Irvine, Tech. Rep. ICS-TR-99-29, Jul. 1999.

[5] R. Dömer, A. Gerstlauer, and D. Shin, “Cycle-accurate RTL
modeling with multi-cycled and pipelined components,” in
Proc. of the Int. SoC Design Conf., Seoul, Korea, Oct. 2006,
pp. 21–28.

[6] R. Sinha and H. Patel, “Abstract state machines as an in-
termediate representation for high-level synthesis,” inDATE,
Grenoble, France, Mar. 2011, pp. 1406–1411.

[7] D. D. Gajski and L. Ramachandran, “Introduction to high-level
synthesis,”IEEE Design & Test of Computers, vol. 11, no. 1,
pp. 44–54, Jan.-Mar. 1994.


