Efficient hardware looping units for FPGAS

Nikolaos Kavvadias and Konstantinos Masselos
Department of Computer Science and Technology
University of Peloponnese
22100 Tripoli, Greece
Email: {nkavv,kma$@uop.gr

Abstract—Looping operations impose a significant bottleneck  In this work, an architectural approach to designing effi-
to achieving better computational efficiency for embedded g cient parametric hardware looping units (HWLUs) targeted t
plications. To confront this problem in embedded computatdn FPGAs is presented that provide zero-cycle overhead imple-

either in the form of programmable processors or FSMD tati f fect | ts. O uti ianifisant
(Finite-State Machine with Datapath) architectures, the e of Mentations for perfect loop nests. Our solution signifigan

customized loop controllers has been suggested. In this papa €xtends previous work in the field [7]. An algorithm is pre-
thorough examination of zero-cycle overhead loop controfirs ap-  sented that can be used for realizing a behavioral-stylesinod

plicable to perfect loop nests operating on multi-dimensioal data  of the hardware looping unit and can also be adapted in terms
is presented. The design of such loop controllers is formaed by of a module generator for the same purpose. Further, patenti

the introduction of a hardware algorithm that fully automat es . . .
this task for the spectrum of behavioral as well as generated uses and extensions of the HWLU design are discussed for

register-transfer level architectures. The presented algrithm  the support of irregular loop structures such as imperfemp |
would prove beneficial in the field of high-level synthesis of nests. The hardware looping designs and generators peesent
architectures for data-intensive processing. It is also sbwn that jn this paper are available as part of the Opencores “hwlu”
the proposed loop controllers can be efficiently utilized fo project [8].

supporting generalized loop structures such as imperfectoop . . . .
nests. The remainder of this paper is organized as follows. Sec-

The performance characteristics (cycle time, chip area) ofhe tion Il overviews previous research on the subject. In Sec-
proposed architectures have been evaluated for FPGA target tion Ill, the HWLU architecture is presented from a hardware

implementations. It is shown that maximum clock frequencie point of view. Section IV presents an algorithm for modeling
of above 230MHz with low logic footprints of about 1.4% of 5,4 generating parameterized HWLU designs and Section V
the overall logic resources can be achieved for supporting pu ; : . : .
to 8 nested loops with 16-bit indices on a modestly-sized Xilx unveills potentlal extensions a”(?' u.ses of the b§3|c_ar¢hrﬂac
Virtex-5 device. Section VI discusses area and timing characterization GA-P
implementations for HWLU variants and provides compar-
. INTRODUCTION isons to a well-known zero-overhead looping architecture.
Recent embedded systems are required to execute d&iaally, Section VIl summarizes the paper.
intensive workloads such as video encoding/decoding.tisr t
reason, the respective market is dominated by generabparp
processor (ARM [1], MIPS32 [2]) and DSP architectures In other approaches, looping cycle overheads are confiionte
featuring architectural characteristics suitable to @ plat- by using branch-decrement instructions, zero-overheagslo
forms (mobile phones, handheld gaming consoles etc). Marecustomized units for more complex loop nests [7], [9]}{11
and more often, embedded RISC families and DSPs invol#er the XiRisc processor [9], branch-decrement instrutio
customized features to data-dominated domains, where tamn be configured prior synthesis. Some DSP cores support
most performance-critical computations occur in variarats a configurable number of hardware looping units, which can
of nested loops. Following this trend, modern DSPs providendle the case of perfect loop nests with fixed iteration
better means for the execution of loops, by surpassing tbeunts [10]. Configurable processors as Xtensa [3] incaitpor
significant overhead of the loop overhead instruction pattezero-overhead mechanisms for single innermost loops only.
which consists of the required instructions to initiate avneUnfortunately, a specific processor template is provided to
iteration of the loop. which alternate control-flow mechanisms cannot be added.
An advantage of the emerging category of soft-core proces-Closer to our work is the dedicated controller for perfect
sors targeted to FPGAs is their configurability to fit specifibop nests found in [7]. Its main advantage is that successiv
user or application demands. Configurable processors sucHaat iterations of nested loops are performed in a singléecyc
Xtensa-LX [3] and the freely accessible Xilinx MicroblazeAs it is originally presented, only fully-nested structsirare
[4], Altera Nios-Il [5] and SPARC V8 LEON-3 [6] present thissupported and the area requirements for handling the loop
adaptability. However, neither of these processors ispéd increment and branching operations grow proportionally to
for executing loop nests without cycle overheads. Usualtiile considered number of loops. In our work, formalized
zero-overhead mechanisms for single innermost loops algorithms are presented for designing a corresponding HDL
present. model and a code generator for an extension of this controlle

II. RELATED WORK



Ioop1_count 1o0p2_count 1oopn_count output control

loopT_count enable

reset

Main

I
loop2_count
1 1 foopn_count Main control status datapath

I I
j !
. b loop bound unit
inner loop processing
control

cmpeq cMpeq | mmmm—ee cmpeq registers loops_end
loops_erd data outputs
HW
—>

Tealll [1;{;(2‘, . IO

innerloop_end

priority encoder reset reset_vct_ix accelerator

—
I—‘ HWLU innerloop_end b
inel{1) 3 nel@) § 3 mem) ¢ 1 (hardware !

index index index looping unit)
inc_by 1 inc_by 1 | TTTTTTT

loop1_count 7] index1
loop2_count index2

ToEK1+1

TEEx 2+ 1 .
loopn_count indexn

index1 index2 indexn indexa+1

Fig. 2: Usage of the HWLU in a programmable processor.
Fig. 1: Block diagram of the HWLU. '9 9 In a prog p

The proposed technique can be also contrasted to fij]eé[ectlng the equality comparatorsnpeq) outputs (bit-

ZOLC (Zero-Overhead Loop Controller) method [12], [13]W|se flag signals) and an external signal from the datapath

The main advantage of ZOLC is the accomodation of Complgxnnerl_oop_end). This signal is produced by _the cor
; : . . responding hardware module that performs the inner loop
loop structures with multiple-entry and multiple-exit resd

%perations, which may be a dedicated accelerator engine.

has been introduced and applied on both non-programmapld & SPecific loop is terminating, this loop as well as all

architectures [12] and the XiRisc processor [9], [13]. its inner loops are resgt d_urlng t.he subsequent cycle. Eor
The ZOLC and the proposed hardware looping unit, c non-outermost loop, its immediate parent _Ioop m_dex. is

be evaluated in terms of the tradeoff between better cyé cremeqted. In ca_se.that none of t_hg loops is terminating,

performance (in favour of HWLU) and more efficient hardwar en the nner loop is mcrem(_anted. Sighalner | oop_end

use (for ZOLC). While with ZOLC, a complex loop structuregua_rds thls_lncrement operation. ) -

with an arbitrary number and combination of loops can be Finally, signall oops_end designates that processing in

controlled, by using a single process unit (one adder, poG_ entire loop _structure has terminated, and is read by the

comparator etc), HWLU demands this hardware replicat&in control unit of the microprocessor or FSMD.

for each loop. In this paper, we show that the HWLU has

small hardware demands on modern FPGAs. Further, its exactUse case: The hardware looping unit within a pro-

performance benefits are evaluated in context of datasiven grammable processor

algorithmic kernels of image and video processing starsdard

A number of extensions for the use of HWLU-enabled con- Fig. 2 indicates a possible design of a control unit used in

trol automatons is also presented, with focus on contiplli® Programmable instruction set processor. It is implied tha

arbitrary loop nests and supporting polyhedral computatio the register architecture of the processor is partitiosedhat
hardware. the loop index registers are stored into dedicated regigtee

register bank comprised by incrementer units in the siniples
case) and a general-purpose register file (not shown here) is
used for stiring other program variables.

The hardware looping architecture (HWLU) naturally can As can be seen, control-dominated segments of the user
incorporate any number of levels of loop nesting in hardwafgogram are implemented in the main datapath, which com-
to eliminate branch instruction overhead for loop incretaen municates through control and status channels with the main
The user can re-generate the corresponding files for modutesitrol unit. When appropriate, the main control unit zates
hw_| oopi ng (structural) andpriority_encoder (rtl) the hardware acceleration datapath unit. Also, at that, titree
for a different number of supported loops. Fig. 1 shows thfutput enable input to the loop bound register bank shown
block diagram of the hardware looping architecture. in the figure is active, so that tHeoop_bound value can

Loop index values are produced every clock cycle based ba read by the HWLU. In our example, this unit performs
the loop bound values (possibly read from a lookup table) fail the inner loop processing. All index variables, are made
each level of nesting. The initial value for the loop indié®s available to the acceleration unit so that high-bandwidttad
provided by a reset mechanism, and the maximum valueasd address computation can be serviced as needed. When its
equal to the loop bound minus one. In the following cycle ajperation terminates, the HWLU is acknowledged through the
a last iteration for a specific loop, the loop index is reset ionner | oop_end asynchronous flag. On an activeops_ -
its initial value. end signal, which occurs when the loop structure is exited,

The priority encoder performs the actual control logithe main control unit pauses the HWLU e.g. by deasserting
in context of the HWLU and operates asynchronously kthe output enable signal to the loop bound values lookugtabl

[1l. THE HARDWARE LOOPING UNIT(HWLU)



IXGEN — B : IXGEN — R:

local temp_index: temporary copy of index. local temp_index: temporary copy of index.
parameter N L P: number of supported loops. alias temp_index: i-th segment of tempndex.
parameter DW: index register width. alias loopi_count: i-th segment of logpcount.
begin parameter N LP: number of supported loops.
if innerloop end equals then begin
for i in NLP downto 1 do PRINT(@ f innerloop_end = 1 then)
if temp_index[i - DW-1:(i-1) - DW] less than for i in NLP downto 1 do
loop_count[i - DW-1:(i-1) - DW] then if i equals NLPthen
if i less than NLPthen PRINT({ f tenp_i ndexi <= | oopi_count then)
initialize temp index[NLP - DW-1:i - DW] PRINT({ ncrenment tenp_index:i by stride)
endif else
increment tempindex[NLP - DW-1:i - DW] by stride PRINT(El si f tenp_indexi <= | oopi_count then)
exit for loop for j in NLP downto i+1 do
endfor PRINT@ nitialize tenp_i ndexy)
if temp_index greater than or equal logmuntthen endfor
clear tempindex[NLP - DW-1:0] PRINT({ ncrenment tenp_index:i by stride)
loops end+«+ 1 endif
endif endfor
endif PRINT(cl ear tenp_i ndex)
endif PRINT( oops_end <« 1)
end PRINT(endi f)
PRINT(Eendi f)
Fig. 3: Pseudocode for the IXGEN-B algorithm. end

Fig. 4: Pseudocode for the IXGEN-R module generation

IV. HARDWARE ALGORITHM FOR ZERGOVERHEAD .
algorithm.

LOOPING ON PERFECT NESTS

Itn th'? se::r':lona a hard;/vare alg(:nthn; |sﬁ_|n_trotdl:]ce((1j fOécribes an HDL code generator of an equivalent index gen-
lau oma Ing_t t?] te3|gnb of colmpact Zn ef :::len gr WalFation unit. Its main difference lies in the fact that it sise
ooping unrts that can be implemented as ully synchrono ?iority encoded scheme that cannot be specified in a parame-
hardware. The looping units of this type are hereafter term >

: . e rized manner using natural HDL semantics. The pseudocode
as ‘index generators’, and abbreviated X6EN which is also 9 P

) . ) emantics of algorithm IXGEN-R can be found in Fig. 4. Here,
used when referring to the algorithm. These units can be af temporary signalempn_index andloop_countn are used
viewed as tuple generators, covering the entire spacé- of - .

twoles for d-di onal dat . 141, Such f heren is the current loop enumeration. In the generated HDL
uples fora-gimensional data processing [14]. uch form ode, these signals are defined as aliased names of elements
descriptions of micro-architectural looping operatioas e

RN . . of the index and loop_count vectors, respectively. It should
exploited in the scope of high-level synthesis for FSMDeshs be noted than all lines featuring a call to tR& NT routine
processors.

. . L illustrate emitted code.
The first fprm of the algorithm, nz.;\mdaKGEN-B, Is directly The VHDL description for the index generator of a triple
applicable in context of a behavioral HDL model for an

. . erfect loop nest Y LP = 3) with unitary stride values is
number of loops. The pseudocode semantics for mplementag0 'oop N ) with unitary stride values i
wn in Fig. 5.

these mechanisms can be found in Fig. 3. The same |
interface to the non-systematic design of Section Il i©als V. EXTENSIONS

used here. Thudpop_count andindex are vectorized forms  potential extensions of the hardware looping units present
of the set of loop bound values and the current iterationorectin this paper are highlighted in the following paragraphs.
correspondingly.

When the data processing in the inner loop is complete®}, Scanning integer points of polyhedra
innerloop_end is asserted and a cascaded set of comparisong et us consider the three-dimensional polyhedron defined
between index registers to their corresponding loop boubg the following set of inequalities. The corresponding im-
values is activated. The flow of comparisons is directed froplementation of a scanning routine either in software or in
outermost to their immediately innermost loops. If the mdehardware would have to visit all the integer points that defin
value is less than the loop bound for a given ldpthe index the polyhedron.
is incremented by a stride value, while all its outer loops 0<i<n
are set to the initial index values. After the first successfu 0<j<n
comparison, the cascaded structure is prematurely exited i 0<k<idti

.. . <k< 7

form similar to thebr eak statement of the C programming
language. Given that the cascaded comparisons fail, arx indeTypically, the scanning code could be automatically gen-
value which is lexicographically larger or equalltmp_count erated by an appropriate tool (Cloog [15]) in the form of
signifies the end of processing in the loop nest. three nested loops. It is easily seen that the upper bound for

The second form of the algorithm, nam&dGEN-R, de- the inner loop is not static since it depends on the value of



signal tenp_index : std_logic_vector(NLPxDW1 downto 0); for (x =0; x <= HB;, x += B) {
alias tenp_indexl: std_|logic_vector(DW1 downto 0) is for (y =0; y <= WB; y += B) {
tenp_i ndex(1*DW 1 downto OxDW; Tl: min = 255 » B * B;
alias |oopl_count: std_|logic_vector(DW1 downto 0) is for (i = -p; i <=p; i++) {
| oop_count (1*DW 1 downto OxDW; for (j =-p; j <=p; j++) {
. T2: dist = 0;
process (clk, reset, innerloop_end, tenp_index, |oop_count) for (k = 0; k <= B-1; k++) {
begi n for (I =0; | <=B-1; I++) {
T3_1: pl = current[x+k, y+l];
elsif (clk’EVENT and clk = '1") then T3_2: if (p2 out of picture borders) {
if (innerloop_end ='1") then p2 = 0;
if (tenp_index3 < |oop3_count) then } else {
tenp_index3 <= tenp_index3 + '1'; p2 = reference[ x+i +k, y+j +l];}
elsif (tenp_index2 < |oop2_count) then T3_3: dist = dist + abs(pl - p2);}}
tenp_index3 <= (others => '0"); T4: if (dist <mn) {
tenp_index2 <= tenp_index2 + '1'; MX[x, y] =1i;
elsif (tenp_indexl < |oopl_count) then MY[X, ¥yl =j;3}311}1}
tenp_index3 <= (others => '0");
tenp_index2 <= (others => '0");
o Lompi ndext <= temp_indext + "1 Fig. 7: C-like pseudocode for the full search motion estiorat
tenp_index <= (others => '0"); (fsme) kernel.
end if;
end if;
end if;

Fig. 5: Partial VHDL description of the index generationtuni
for NLP=3.

L

—— | innerloop_end loaps_endl— g

Loop bound HWLU i = index(3DW-1:27DW)
register file

index(NLP*DW-1
loop_count(NLP*"DW-1:0) k= Index(DW-1:0)
=) Fig. 8: Sketch of motion estimation hardware using three

HWLU modules.

Fig. 6: Looping control hardware for scanning the aforemen-

tioned polyhedron. vector fully describing the loop nest ig,y,1,j,k,1). The
outer (z,y) loops select the block from the current picture

indicesi, j and thus it cannot be determined at compile timégr which the minimum motion vector is calculated. By

In this case, the HWLU serves as part of the necessary conitetating (i, j), each time a reference block is selected from

logic, requiring only limited additions. Fig. 6 illustratean the reference window. Initially, the dist variable is cledyin

appropriate hardware implementation, utilizing an addaer forder to accumulate the distance metric for the selectetkblo

computing thei + j sum. The resulting value is then storedror each position in the search region, the distance kernel

back in an external register bank for the loop bound entriess executed, and this is performed for &H,1) pixels in the

This approach can be easily extended to more intriguiR@rrent picture block.

cases such as unions of polyhedra that are of certain ibteresthe data processing tasks are summarized as follows:
in the field of high-level synthesis.

J=index(2*DW-1:.DW)

T1: Initializes the min variable
B. Using the hardware looping unit in general loop structures.  T2: Initializes the dist variable
Full Search Motion Estimation T3: Sum of absolute differences (SAD) criterion, divided into

The HWLU approach can be used for implementing the ~Subtasks/'3_1to 73 3 .
Full-Search Motion Estimation feme) algorithm. Motion 14+ Updates the(i, j) motion vector when a new min value
estimation is used in MPEG video compression for removing IS found.
the temporal redundancy in a video sequence. Compressio\ high-level view of a motion estimator design using
is achieved by encoding only the displacement values HWWLU modules is shown in Fig. 8. Each double loop nest is
pixel blocks (motion vectors) between successive frambs. Tassigned its dedicated HWLU instance. Updating the itenati
calculation of the motion vector is performed by a costector is enabled by the termination of tasks T3 and T4 which
function minimizing the prediction error. are positioned at a closing position for a loop [13]. It can be

In Fig. 7, the pseudocode of thisme algorithm is shown. seen that T1 and T2 do not affect the update of the iteration
It consists of three double nested loops incorporating #ia dvector. The respective index registers that provide thesichy
processing tasks of the algorithm, denoted by labels of thmplementation of the iteration vector are stored withie th
form Tnum, wherenum is a positive integer. The iterationcorresponding HWLUSs.



VI. PERFORMANCE EVALUATION OF THE HARDWARE

LOOPING UNITS

(MHz)

As it has been mentioned before, the proposed hardwarez

looping units are easily adaptable to both programmable and
FSMD-like architectures. In order to assess the performanc
of the HWLU, IXGEN-B and IXGEN-R hardware looping
units for perfect loop nests, they are evaluated over thieeent
parameter set for the following value séf,LP : 1 — 8 and
DW : 8,12,16. Since most of the benchmark applications
deal with image or video manipulation, they usually opecate
two-dimensional pixel data in multiple nested loop schemes
Further, the examined index register widths are realistices
they correspond to the size of the horizontal and vertical
dimensions of digital images (e.g. as obtained from digital
still cameras) which are typically within this range.

For each point in the parameter set, the timing (maximum
clock frequency) and area requirements are measured for
representative FPGA process. The logic synthesis tool issed
Xilinx Webpack ISE 9.2i.

Throughout the evaluations, the XC5VLX50 device (FF665
package and ‘-1’ speed grade) which is one of the small-
est available Virtex-5 devices. The maximum capacity of
XC5VLX50 is 7,200 slices (which translates to 28,800 6-inpu
LUTs), 96 18-kbit block RAMs (BRAMs) and 48 DSP48E
datapath blocks. Both BRAMs and DSP48E blocks remain
unused by the looping logic.

A. Speed measurements

All three variants of the hardware looping architecture
(HWLU, IXGEN-B, and IXGEN-R) have been designed in
VHDL and synthesized for XC5VLX50. Fig. 9 depicts the
maximum clock frequency estimates for different number of
supported maximum number of loopd LP={1 ...8}) and
for different index register widths[{iv’ = 8, 12 or 16).

It is obvious that the original IXGEN-R design is the most
efficient in terms of maximum clock frequency: the corre-
sponding performance margins are 20.3% against HWLU and
9.5% against IXGEN-B. Even more important is the fact that
the IXGEN-R design achieves nearly unvarying performance
for different index register widths. The latter is due to fhet

(]
>
o

Maximum clock fre

lock freaﬂency (MHz)

aximum Cl

M

Maximum clock frequency (MHz)

320t
300} R
280*,/j1/_/,,.><-,_,_>_ e 8
2601 x .
240] \
220

200

180 4

160 I I I I I I
1

2 3 4 5 6 7
Number of nested hardware loops: NLP
(a) DW = 8 hits.

2 3 4 5 6 7
Number of nested hardware loops: NLP

(b) DW = 12 bits.

2 3 4 5 6 7
Number of nested hardware loops: NLP

(c) DW = 16 bits.

Fig. 9: Maximum clock frequency for the hardware looping

that the synthesis tool efficiently balances the index imenet  units (Xilinx FPGA XC5VLX50-FF665-1).

logic for the prioritized cases, the evaluation of which has
the same logic depth in an FPGA implementation. Both the

HWLU and the IXGEN-B designs don't scale gracefullyDW values. Many of these slices get populated wihgi is
with increased values abW, since the synthesis tool infersincreased and hardware exploitation for HWLU is signifitant
cascaded logic. improved. On the contrary, the IXGEN-B and IXGEN-R
. designs feature more compact descriptions that leave nma roo
B. Chip area measurements for such behavior.

The chip area requirements are shown in Fig. 10. . .

When compared regarding the area requirements, it is shofyn Comparison of the proposed hardware looping scheme
that HWLU presents the lowest demands fo#/ = 16 while 2gainst ZOLC
the IXGEN-R design is better for smallgp¥¥ values. The In addition to the full-search motion estimatiorfisnie)
HWLU is smaller by a factor of 32.9% than IXGEN-B forbenchmark, an application set consisting of three morelbenc
all cases and 18.3% than IXGEN-R fd#WW = 16. This marks was used for verification and performance comparisons
observation can be explained by taking account the sparsefythe proposed hardware looping units (HWLU) against
populated logic slices in the HWLU design for the smallOLC [13]. fsme_dir is a data layout optimized version of



w
[
=}
—
G
o}
o
£
3
=
o
IS
a
a
=
@]

&

0 1 1 1 1 1 1
1 2 3 4 5 6 7
Number of nested hardware loops: NLP
(a) DW = 8 hits.
w
[
=}
—
G
o}
o
£
=1
=
o
IS
[
a
=
@]
0 1 1 1 1 1 1
1 2 3 4 5 6 7
Number of nested hardware loops: NLP
(b) DW = 12 bits.
600 T T T

- 500- ) b
[ S
=}
-
kS
@
o
S
=}
=
«
o
©
2
=
(@]

3
Number of nested hardware loops: NLP

(c) DW = 16 bhits.

4 5 6

Fig. 10: Chip area in number of LUTSs for the hardware looping

units (Xilinx FPGA XC5VLX50-FF665-1).

TABLE I: Performance results for the examined applications

Cycles Cycles
Benchmark (l;lfulrglé)e; with with %diff
PS | HwLu ZOLC
fsme 6 | 68696549 70128467 2.04
fsme_dr 20 | 49215771 | 50759199 3.04
matmult 5 1926158 1940451 0.74
redct 18 6488100 6565753 1.18
VII. CONCLUSION

In this paper, a hardware looping architecture and its po-
tential uses and extensions for data-intensive processing
embedded systems is introduced. The presented archéectur
is able to provide all necessary control means for executing
perfect loop nests without any cycle overhead for updating
the iteration vector. Out of three different variants of the
architecture, the most efficient is denoted regarding tmin
and area characterization results. When speed comes in mind
the architecture adhering to the IXGEN-R algorithm is more
efficient, while for larger index register widths, a lowexl
mixed structural-RTL design is more area efficient (HWLU).
The cycle performance of the proposed architecture is away
better than the ZOLC [13] architecture due to simultaneous
multiple-index update in perfect loop nests. While ZOLC has
a much broader context, certain techniques can be apphéd th
augment the use of HWLU-like architecture even on general
loop nests.

REFERENCES

ARM ltd. [Online]. Available: http://www.arm.com

MIPS technologies inc. [Online]. Available: http://mwmips.com

R. Gonzalez, “Xtensa: A configurable and extensible pssor,”|EEE
Micro, vol. 20, no. 2, pp. 60-70, March-April 2000.

Xilinx home page. [Online]. Available: http://www.iix.com

Altera home page. [Online]. Available: http://www.atta.com
Aeroflex Gaisler research. [Online]. Available: htfpavw.gaisler.com
D. Talla, L. K. John, and D. Burger, “Bottlenecks in muidia
processing with SIMD style extensions and architecturbbecements,”
|IEEE Trans. Comput., vol. 52, no. 8, pp. 1015-1031, August 2003.
N. Kavvadias. Hardware looping unit. [Online]. Availeb http:
/lIwww.opencores.org/project, hwlu

F. Campi, R. Canegallo, and R. Guerrieri, “IP-reusabkeb& VLIW
RISC core,” inProceedings of the 27th European Solid-State Circuits
Conference, September 2001, pp. 456-459.

M. Kuulusa, J. Nurmi, J. Takala, P. Ojala, and H. Herrari@é flexible
DSP core for embedded system$FEE Des. Test. Comput., vol. 3,
no. 4, pp. 60-68, October 1997.

J.-Y. Lee and |.-C. Park, “Loop and address code op#tution for digital
signal processors[EICE Trans. Fund. Elec., Comm. and Comp. <c.,
vol. E85-A, no. 6, pp. 1408-1415, June 2002.

(8]
El

[20]

[11]

[12]
fsme transformed by appropriate data-reuse transformations

[16]. matmult is the block-based matrix multiplication, an
rcdct the row-column decomposition DCT algorithm. All
kernels were tested on CIF-compatibkbZ x 288) frames
extracted from YUV video sequences. For all application8#
hand-optimized datapath units for each data processirg tas;
were designed in VHDL.

Table | summarizes the experimental results. It can be seen
that the HWLU approach is competitive to ZOLC with a smalfe)
(1.75%) performance advantage. It is assumed here that both
looping units are parts of SoC-level designs, so that theytdo
determine the critical path.

13]

N. Kavvadias and S. Nikolaidis, “Zero-overhead loomtoller that
implements multimedia algorithms/EE Computers and Digital Tech-
niques, vol. 152, no. 4, pp. 517-526, July 2005.

——, “Elimination of overhead operations in complex fostructures
for embedded microprocessor$EEE Trans. Comput., vol. 57, no. 2,
pp. 200-214, Feb. 2008.

D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 2:
Generating All Tuples and Permutations, 2005.

C. Bastoul, “Code generation in the polyhedral modekasier than
you think,” in 13th IEEE International Conference on Parallel Archi-
tecture and Compilation Techniques (PACT' 04), Juan-les-Pins, France,
September 2004, pp. 7-16.

F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Negiaele,
and A. VandecapelleCustom Memory Management Methodology: Ex-
ploration of Memory Organisation for Embedded Multimedia System
Design. Boston: Kluwer Academic Publishers, 1998.



