
Efficient hardware looping units for FPGAs
Nikolaos Kavvadias and Konstantinos Masselos
Department of Computer Science and Technology

University of Peloponnese
22100 Tripoli, Greece

Email: {nkavv,kmas}@uop.gr

Abstract—Looping operations impose a significant bottleneck
to achieving better computational efficiency for embedded ap-
plications. To confront this problem in embedded computation
either in the form of programmable processors or FSMD
(Finite-State Machine with Datapath) architectures, the use of
customized loop controllers has been suggested. In this paper, a
thorough examination of zero-cycle overhead loop controllers ap-
plicable to perfect loop nests operating on multi-dimensional data
is presented. The design of such loop controllers is formalized by
the introduction of a hardware algorithm that fully automat es
this task for the spectrum of behavioral as well as generated
register-transfer level architectures. The presented algorithm
would prove beneficial in the field of high-level synthesis of
architectures for data-intensive processing. It is also shown that
the proposed loop controllers can be efficiently utilized for
supporting generalized loop structures such as imperfect loop
nests.

The performance characteristics (cycle time, chip area) ofthe
proposed architectures have been evaluated for FPGA target
implementations. It is shown that maximum clock frequencies
of above 230MHz with low logic footprints of about 1.4% of
the overall logic resources can be achieved for supporting up
to 8 nested loops with 16-bit indices on a modestly-sized Xilinx
Virtex-5 device.

I. I NTRODUCTION

Recent embedded systems are required to execute data-
intensive workloads such as video encoding/decoding. For this
reason, the respective market is dominated by general-purpose
processor (ARM [1], MIPS32 [2]) and DSP architectures
featuring architectural characteristics suitable to portable plat-
forms (mobile phones, handheld gaming consoles etc). More
and more often, embedded RISC families and DSPs involve
customized features to data-dominated domains, where the
most performance-critical computations occur in various forms
of nested loops. Following this trend, modern DSPs provide
better means for the execution of loops, by surpassing the
significant overhead of the loop overhead instruction pattern
which consists of the required instructions to initiate a new
iteration of the loop.

An advantage of the emerging category of soft-core proces-
sors targeted to FPGAs is their configurability to fit specific
user or application demands. Configurable processors such as
Xtensa-LX [3] and the freely accessible Xilinx Microblaze
[4], Altera Nios-II [5] and SPARC V8 LEON-3 [6] present this
adaptability. However, neither of these processors is optimized
for executing loop nests without cycle overheads. Usually
zero-overhead mechanisms for single innermost loops are
present.

In this work, an architectural approach to designing effi-
cient parametric hardware looping units (HWLUs) targeted to
FPGAs is presented that provide zero-cycle overhead imple-
mentations for perfect loop nests. Our solution significantly
extends previous work in the field [7]. An algorithm is pre-
sented that can be used for realizing a behavioral-style model
of the hardware looping unit and can also be adapted in terms
of a module generator for the same purpose. Further, potential
uses and extensions of the HWLU design are discussed for
the support of irregular loop structures such as imperfect loop
nests. The hardware looping designs and generators presented
in this paper are available as part of the Opencores “hwlu”
project [8].

The remainder of this paper is organized as follows. Sec-
tion II overviews previous research on the subject. In Sec-
tion III, the HWLU architecture is presented from a hardware
point of view. Section IV presents an algorithm for modeling
and generating parameterized HWLU designs and Section V
unveils potential extensions and uses of the basic architecture.
Section VI discusses area and timing characterization of FPGA
implementations for HWLU variants and provides compar-
isons to a well-known zero-overhead looping architecture.
Finally, Section VII summarizes the paper.

II. RELATED WORK

In other approaches, looping cycle overheads are confronted
by using branch-decrement instructions, zero-overhead loops
or customized units for more complex loop nests [7], [9]–[11].
For the XiRisc processor [9], branch-decrement instructions
can be configured prior synthesis. Some DSP cores support
a configurable number of hardware looping units, which can
handle the case of perfect loop nests with fixed iteration
counts [10]. Configurable processors as Xtensa [3] incorporate
zero-overhead mechanisms for single innermost loops only.
Unfortunately, a specific processor template is provided to
which alternate control-flow mechanisms cannot be added.

Closer to our work is the dedicated controller for perfect
loop nests found in [7]. Its main advantage is that successive
last iterations of nested loops are performed in a single cycle.
As it is originally presented, only fully-nested structures are
supported and the area requirements for handling the loop
increment and branching operations grow proportionally to
the considered number of loops. In our work, formalized
algorithms are presented for designing a corresponding HDL
model and a code generator for an extension of this controller.

Fig. 1: Block diagram of the HWLU.

The proposed technique can be also contrasted to the
ZOLC (Zero-Overhead Loop Controller) method [12], [13].
The main advantage of ZOLC is the accomodation of complex
loop structures with multiple-entry and multiple-exit nodes
while eliminating most cases for loop overheads. The ZOLC
has been introduced and applied on both non-programmable
architectures [12] and the XiRisc processor [9], [13].

The ZOLC and the proposed hardware looping unit, can
be evaluated in terms of the tradeoff between better cycle
performance (in favour of HWLU) and more efficient hardware
use (for ZOLC). While with ZOLC, a complex loop structure
with an arbitrary number and combination of loops can be
controlled, by using a single process unit (one adder, one
comparator etc), HWLU demands this hardware replicated
for each loop. In this paper, we show that the HWLU has
small hardware demands on modern FPGAs. Further, its exact
performance benefits are evaluated in context of data-intensive
algorithmic kernels of image and video processing standards.
A number of extensions for the use of HWLU-enabled con-
trol automatons is also presented, with focus on controlling
arbitrary loop nests and supporting polyhedral computation in
hardware.

III. T HE HARDWARE LOOPING UNIT (HWLU)

The hardware looping architecture (HWLU) naturally can
incorporate any number of levels of loop nesting in hardware
to eliminate branch instruction overhead for loop increments.
The user can re-generate the corresponding files for modules
hw_looping (structural) andpriority_encoder (rtl)
for a different number of supported loops. Fig. 1 shows the
block diagram of the hardware looping architecture.

Loop index values are produced every clock cycle based on
the loop bound values (possibly read from a lookup table) for
each level of nesting. The initial value for the loop indicesis
provided by a reset mechanism, and the maximum value is
equal to the loop bound minus one. In the following cycle of
a last iteration for a specific loop, the loop index is reset to
its initial value.

The priority encoder performs the actual control logic
in context of the HWLU and operates asynchronously by

Fig. 2: Usage of the HWLU in a programmable processor.

detecting the equality comparators (cmpeq) outputs (bit-
wise flag signals) and an external signal from the datapath
(innerloop_end). This signal is produced by the cor-
responding hardware module that performs the inner loop
operations, which may be a dedicated accelerator engine.

If a specific loop is terminating, this loop as well as all
its inner loops are reset during the subsequent cycle. For
a non-outermost loop, its immediate parent loop index is
incremented. In case that none of the loops is terminating,
then the inner loop is incremented. Signalinnerloop_end
guards this increment operation.

Finally, signalloops_end designates that processing in
the entire loop structure has terminated, and is read by the
main control unit of the microprocessor or FSMD.

A. Use case: The hardware looping unit within a pro-
grammable processor

Fig. 2 indicates a possible design of a control unit used in
a programmable instruction set processor. It is implied that
the register architecture of the processor is partitioned,so that
the loop index registers are stored into dedicated registers (the
register bank comprised by incrementer units in the simplest
case) and a general-purpose register file (not shown here) is
used for stiring other program variables.

As can be seen, control-dominated segments of the user
program are implemented in the main datapath, which com-
municates through control and status channels with the main
control unit. When appropriate, the main control unit activates
the hardware acceleration datapath unit. Also, at that time, the
output enable input to the loop bound register bank shown
in the figure is active, so that theloop_bound value can
be read by the HWLU. In our example, this unit performs
all the inner loop processing. All index variables, are made
available to the acceleration unit so that high-bandwidth data
and address computation can be serviced as needed. When its
operation terminates, the HWLU is acknowledged through the
innerloop_end asynchronous flag. On an activeloops_-
end signal, which occurs when the loop structure is exited,
the main control unit pauses the HWLU e.g. by deasserting
the output enable signal to the loop bound values lookup table.

IXGEN −B :

local temp index: temporary copy of index.
parameter NLP : number of supported loops.
parameter DW : index register width.

begin
if innerloop end equals 1then

for i in NLP downto 1 do
if temp index[i · DW-1:(i-1) · DW] less than

loop count[i · DW-1:(i-1) · DW] then
if i less than NLPthen

initialize temp index[NLP · DW-1:i · DW]
endif
increment tempindex[NLP · DW-1:i · DW] by stride
exit for loop

endfor
if temp index greater than or equal loopcount then

clear tempindex[NLP · DW-1:0]
loops end← 1

endif
endif

endif
end

Fig. 3: Pseudocode for the IXGEN-B algorithm.

IV. H ARDWARE ALGORITHM FOR ZERO-OVERHEAD

LOOPING ON PERFECT NESTS

In this section, a hardware algorithm is introduced for
automating the design of compact and efficient hardware
looping units that can be implemented as fully synchronous
hardware. The looping units of this type are hereafter termed
as ‘index generators’, and abbreviated toIXGEN which is also
used when referring to the algorithm. These units can be also
viewed as tuple generators, covering the entire space ofd-
tuples for d-dimensional data processing [14]. Such formal
descriptions of micro-architectural looping operations can be
exploited in the scope of high-level synthesis for FSMD-based
processors.

The first form of the algorithm, namedIXGEN-B, is directly
applicable in context of a behavioral HDL model for any
number of loops. The pseudocode semantics for implementing
these mechanisms can be found in Fig. 3. The same I/O
interface to the non-systematic design of Section III is also
used here. Thus,loop count and index are vectorized forms
of the set of loop bound values and the current iteration vector,
correspondingly.

When the data processing in the inner loop is completed,
innerloop end is asserted and a cascaded set of comparisons
between index registers to their corresponding loop bound
values is activated. The flow of comparisons is directed from
outermost to their immediately innermost loops. If the index
value is less than the loop bound for a given loopi, the index
is incremented by a stride value, while all its outer loops
are set to the initial index values. After the first successful
comparison, the cascaded structure is prematurely exited in a
form similar to thebreak statement of the C programming
language. Given that the cascaded comparisons fail, an index
value which is lexicographically larger or equal toloop count
signifies the end of processing in the loop nest.

The second form of the algorithm, namedIXGEN-R, de-

IXGEN −R :

local temp index: temporary copy of index.
alias temp indexi: i-th segment of tempindex.
alias loopi count: i-th segment of loopcount.
parameter NLP : number of supported loops.

begin
PRINT(if innerloop_end = 1 then)
for i in NLP downto 1 do

if i equals NLPthen
PRINT(if temp_indexi <= loopi_count then)
PRINT(increment temp_indexi by stride)

else
PRINT(elsif temp_indexi <= loopi_count then)
for j in NLP downto i+1 do

PRINT(initialize temp_indexj)
endfor
PRINT(increment temp_indexi by stride)

endif
endfor
PRINT(clear temp_index)
PRINT(loops_end ← 1)
PRINT(endif)
PRINT(endif)

end

Fig. 4: Pseudocode for the IXGEN-R module generation
algorithm.

scribes an HDL code generator of an equivalent index gen-
eration unit. Its main difference lies in the fact that it uses a
priority encoded scheme that cannot be specified in a parame-
terized manner using natural HDL semantics. The pseudocode
semantics of algorithm IXGEN-R can be found in Fig. 4. Here,
the temporary signalstempn index and loop countn are used
wheren is the current loop enumeration. In the generated HDL
code, these signals are defined as aliased names of elements
of the index and loop count vectors, respectively. It should
be noted than all lines featuring a call to thePRINT routine
illustrate emitted code.

The VHDL description for the index generator of a triple
perfect loop nest (NLP = 3) with unitary stride values is
shown in Fig. 5.

V. EXTENSIONS

Potential extensions of the hardware looping units presented
in this paper are highlighted in the following paragraphs.

A. Scanning integer points of polyhedra

Let us consider the three-dimensional polyhedron defined
by the following set of inequalities. The corresponding im-
plementation of a scanning routine either in software or in
hardware would have to visit all the integer points that define
the polyhedron.

0 ≤ i ≤ n

0 ≤ j ≤ n

0 ≤ k ≤ i+ j

Typically, the scanning code could be automatically gen-
erated by an appropriate tool (Cloog [15]) in the form of
three nested loops. It is easily seen that the upper bound for
the inner loop is not static since it depends on the value of

� �
signal temp_index : std_logic_vector(NLP*DW-1 downto 0);
alias temp_index1: std_logic_vector(DW-1 downto 0) is

temp_index(1*DW-1 downto 0*DW);
alias loop1_count: std_logic_vector(DW-1 downto 0) is

loop_count(1*DW-1 downto 0*DW);
...

process (clk, reset, innerloop_end, temp_index, loop_count)
begin
...
elsif (clk’EVENT and clk = ’1’) then
if (innerloop_end = ’1’) then

if (temp_index3 < loop3_count) then
temp_index3 <= temp_index3 + ’1’;

elsif (temp_index2 < loop2_count) then
temp_index3 <= (others => ’0’);
temp_index2 <= temp_index2 + ’1’;

elsif (temp_index1 < loop1_count) then
temp_index3 <= (others => ’0’);
temp_index2 <= (others => ’0’);
temp_index1 <= temp_index1 + ’1’;

else
temp_index <= (others => ’0’);

end if;
end if;

end if;
� �

Fig. 5: Partial VHDL description of the index generation unit
for NLP=3.

Fig. 6: Looping control hardware for scanning the aforemen-
tioned polyhedron.

indicesi, j and thus it cannot be determined at compile time.
In this case, the HWLU serves as part of the necessary control
logic, requiring only limited additions. Fig. 6 illustrates an
appropriate hardware implementation, utilizing an adder for
computing thei + j sum. The resulting value is then stored
back in an external register bank for the loop bound entries.

This approach can be easily extended to more intriguing
cases such as unions of polyhedra that are of certain interest
in the field of high-level synthesis.

B. Using the hardware looping unit in general loop structures:
Full Search Motion Estimation

The HWLU approach can be used for implementing the
Full-Search Motion Estimation (fsme) algorithm. Motion
estimation is used in MPEG video compression for removing
the temporal redundancy in a video sequence. Compression
is achieved by encoding only the displacement values of
pixel blocks (motion vectors) between successive frames. The
calculation of the motion vector is performed by a cost
function minimizing the prediction error.

In Fig. 7, the pseudocode of thefsme algorithm is shown.
It consists of three double nested loops incorporating the data
processing tasks of the algorithm, denoted by labels of the
form Tnum, wherenum is a positive integer. The iteration

� �
for (x = 0; x <= H-B; x += B) {

for (y = 0; y <= W-B; y += B) {
T1: min = 255 * B * B;

for (i = -p; i <= p; i++) {
for (j = -p; j <= p; j++) {

T2: dist = 0;
for (k = 0; k <= B-1; k++) {
for (l = 0; l <= B-1; l++) {

T3_1: p1 = current[x+k, y+l];
T3_2: if (p2 out of picture borders) {

p2 = 0;
} else {

p2 = reference[x+i+k, y+j+l];}
T3_3: dist = dist + abs(p1 - p2);}}
T4: if (dist < min) {

MVx[x, y] = i;
MVy[x, y] = j;}}}}}

� �

Fig. 7: C-like pseudocode for the full search motion estimation
(fsme) kernel.

Fig. 8: Sketch of motion estimation hardware using three
HWLU modules.

vector fully describing the loop nest is(x, y, i, j, k, l). The
outer (x, y) loops select the block from the current picture
for which the minimum motion vector is calculated. By
iterating (i, j), each time a reference block is selected from
the reference window. Initially, the dist variable is cleared, in
order to accumulate the distance metric for the selected block.
For each position in the search region, the distance kernel
is executed, and this is performed for all(k, l) pixels in the
current picture block.

The data processing tasks are summarized as follows:

T1: Initializes the min variable
T2: Initializes the dist variable
T3: Sum of absolute differences (SAD) criterion, divided into

subtasksT 3 1 to T 3 3
T4: Updates the(i, j) motion vector when a new min value

is found.

A high-level view of a motion estimator design using
HWLU modules is shown in Fig. 8. Each double loop nest is
assigned its dedicated HWLU instance. Updating the iteration
vector is enabled by the termination of tasks T3 and T4 which
are positioned at a closing position for a loop [13]. It can be
seen that T1 and T2 do not affect the update of the iteration
vector. The respective index registers that provide the physical
implementation of the iteration vector are stored within the
corresponding HWLUs.

VI. PERFORMANCE EVALUATION OF THE HARDWARE

LOOPING UNITS

As it has been mentioned before, the proposed hardware
looping units are easily adaptable to both programmable and
FSMD-like architectures. In order to assess the performance
of the HWLU, IXGEN-B and IXGEN-R hardware looping
units for perfect loop nests, they are evaluated over the entire
parameter set for the following value set;NLP : 1 − 8 and
DW : 8, 12, 16. Since most of the benchmark applications
deal with image or video manipulation, they usually operateon
two-dimensional pixel data in multiple nested loop schemes.
Further, the examined index register widths are realistic since
they correspond to the size of the horizontal and vertical
dimensions of digital images (e.g. as obtained from digital
still cameras) which are typically within this range.

For each point in the parameter set, the timing (maximum
clock frequency) and area requirements are measured for a
representative FPGA process. The logic synthesis tool usedis
Xilinx Webpack ISE 9.2i.

Throughout the evaluations, the XC5VLX50 device (FF665
package and ‘-1’ speed grade) which is one of the small-
est available Virtex-5 devices. The maximum capacity of
XC5VLX50 is 7,200 slices (which translates to 28,800 6-input
LUTs), 96 18-kbit block RAMs (BRAMs) and 48 DSP48E
datapath blocks. Both BRAMs and DSP48E blocks remain
unused by the looping logic.

A. Speed measurements

All three variants of the hardware looping architecture
(HWLU, IXGEN-B, and IXGEN-R) have been designed in
VHDL and synthesized for XC5VLX50. Fig. 9 depicts the
maximum clock frequency estimates for different number of
supported maximum number of loops (NLP={1 . . . 8}) and
for different index register widths (DW = 8, 12 or 16).

It is obvious that the original IXGEN-R design is the most
efficient in terms of maximum clock frequency: the corre-
sponding performance margins are 20.3% against HWLU and
9.5% against IXGEN-B. Even more important is the fact that
the IXGEN-R design achieves nearly unvarying performance
for different index register widths. The latter is due to thefact
that the synthesis tool efficiently balances the index increment
logic for the prioritized cases, the evaluation of which has
the same logic depth in an FPGA implementation. Both the
HWLU and the IXGEN-B designs don’t scale gracefully
with increased values ofDW , since the synthesis tool infers
cascaded logic.

B. Chip area measurements

The chip area requirements are shown in Fig. 10.
When compared regarding the area requirements, it is shown

that HWLU presents the lowest demands forDW = 16 while
the IXGEN-R design is better for smallerDW values. The
HWLU is smaller by a factor of 32.9% than IXGEN-B for
all cases and 18.3% than IXGEN-R forDW = 16. This
observation can be explained by taking account the sparsely
populated logic slices in the HWLU design for the small

 160

 180

 200

 220

 240

 260

 280

 300

 320

 1 2 3 4 5 6 7 8

M
ax

im
um

 c
lo

ck
 fr

eq
ue

nc
y

(M
H

z)

Number of nested hardware loops: NLP

HWLU IXGEN−B IXGEN−R

(a) DW = 8 bits.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 1 2 3 4 5 6 7 8
M

ax
im

um
 c

lo
ck

 fr
eq

ue
nc

y
(M

H
z)

Number of nested hardware loops: NLP

HWLU IXGEN−B IXGEN−R

(b) DW = 12 bits.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 1 2 3 4 5 6 7 8

M
ax

im
um

 c
lo

ck
 fr

eq
ue

nc
y

(M
H

z)

Number of nested hardware loops: NLP

HWLU IXGEN−B IXGEN−R

(c) DW = 16 bits.

Fig. 9: Maximum clock frequency for the hardware looping
units (Xilinx FPGA XC5VLX50-FF665-1).

DW values. Many of these slices get populated whenDW is
increased and hardware exploitation for HWLU is significantly
improved. On the contrary, the IXGEN-B and IXGEN-R
designs feature more compact descriptions that leave no room
for such behavior.

C. Comparison of the proposed hardware looping scheme
against ZOLC

In addition to the full-search motion estimation (fsme)
benchmark, an application set consisting of three more bench-
marks was used for verification and performance comparisons
of the proposed hardware looping units (HWLU) against
ZOLC [13]. fsme dir is a data layout optimized version of

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8

C
hi

p
ar

ea
 (

nu
m

be
r

of
 L

U
T

s)

Number of nested hardware loops: NLP

HWLU IXGEN−B IXGEN−R

(a) DW = 8 bits.

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8

C
hi

p
ar

ea
 (

nu
m

be
r

of
 L

U
T

s)

Number of nested hardware loops: NLP

HWLU IXGEN−B IXGEN−R

(b) DW = 12 bits.

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8

C
hi

p
ar

ea
 (

nu
m

be
r

of
 L

U
T

s)

Number of nested hardware loops: NLP

HWLU IXGEN−B IXGEN−R

(c) DW = 16 bits.

Fig. 10: Chip area in number of LUTs for the hardware looping
units (Xilinx FPGA XC5VLX50-FF665-1).

fsme transformed by appropriate data-reuse transformations
[16]. matmult is the block-based matrix multiplication, and
rcdct the row-column decomposition DCT algorithm. All
kernels were tested on CIF-compatible (352 × 288) frames
extracted from YUV video sequences. For all applications,
hand-optimized datapath units for each data processing task
were designed in VHDL.

Table I summarizes the experimental results. It can be seen
that the HWLU approach is competitive to ZOLC with a small
(1.75%) performance advantage. It is assumed here that both
looping units are parts of SoC-level designs, so that they don’t
determine the critical path.

TABLE I: Performance results for the examined applications.

Benchmark Number
of loops

Cycles
with

HWLU

Cycles
with

ZOLC
%diff

fsme 6 68696549 70128467 2.04
fsme dr 20 49215771 50759199 3.04
matmult 5 1926158 1940451 0.74
rcdct 18 6488100 6565753 1.18

VII. C ONCLUSION

In this paper, a hardware looping architecture and its po-
tential uses and extensions for data-intensive processingin
embedded systems is introduced. The presented architecture
is able to provide all necessary control means for executing
perfect loop nests without any cycle overhead for updating
the iteration vector. Out of three different variants of the
architecture, the most efficient is denoted regarding timing
and area characterization results. When speed comes in mind,
the architecture adhering to the IXGEN-R algorithm is more
efficient, while for larger index register widths, a lower-level
mixed structural-RTL design is more area efficient (HWLU).
The cycle performance of the proposed architecture is always
better than the ZOLC [13] architecture due to simultaneous
multiple-index update in perfect loop nests. While ZOLC has
a much broader context, certain techniques can be applied that
augment the use of HWLU-like architecture even on general
loop nests.

REFERENCES

[1] ARM ltd. [Online]. Available: http://www.arm.com
[2] MIPS technologies inc. [Online]. Available: http://www.mips.com
[3] R. Gonzalez, “Xtensa: A configurable and extensible processor,”IEEE

Micro, vol. 20, no. 2, pp. 60–70, March-April 2000.
[4] Xilinx home page. [Online]. Available: http://www.xilinx.com
[5] Altera home page. [Online]. Available: http://www.altera.com
[6] Aeroflex Gaisler research. [Online]. Available: http://www.gaisler.com
[7] D. Talla, L. K. John, and D. Burger, “Bottlenecks in multimedia

processing with SIMD style extensions and architectural enhancements,”
IEEE Trans. Comput., vol. 52, no. 8, pp. 1015–1031, August 2003.

[8] N. Kavvadias. Hardware looping unit. [Online]. Available: http:
//www.opencores.org/project,hwlu

[9] F. Campi, R. Canegallo, and R. Guerrieri, “IP-reusable 32-bit VLIW
RISC core,” inProceedings of the 27th European Solid-State Circuits
Conference, September 2001, pp. 456–459.

[10] M. Kuulusa, J. Nurmi, J. Takala, P. Ojala, and H. Herranen, “A flexible
DSP core for embedded systems,”IEEE Des. Test. Comput., vol. 3,
no. 4, pp. 60–68, October 1997.

[11] J.-Y. Lee and I.-C. Park, “Loop and address code optimization for digital
signal processors,”IEICE Trans. Fund. Elec., Comm. and Comp. Sc.,
vol. E85-A, no. 6, pp. 1408–1415, June 2002.

[12] N. Kavvadias and S. Nikolaidis, “Zero-overhead loop controller that
implements multimedia algorithms,”IEE Computers and Digital Tech-
niques, vol. 152, no. 4, pp. 517–526, July 2005.

[13] ——, “Elimination of overhead operations in complex loop structures
for embedded microprocessors,”IEEE Trans. Comput., vol. 57, no. 2,
pp. 200–214, Feb. 2008.

[14] D. E. Knuth,The Art of Computer Programming, Volume 4, Fascicle 2:
Generating All Tuples and Permutations, 2005.

[15] C. Bastoul, “Code generation in the polyhedral model iseasier than
you think,” in 13th IEEE International Conference on Parallel Archi-
tecture and Compilation Techniques (PACT’04), Juan-les-Pins, France,
September 2004, pp. 7–16.

[16] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele,
and A. Vandecapelle,Custom Memory Management Methodology: Ex-
ploration of Memory Organisation for Embedded Multimedia System
Design. Boston: Kluwer Academic Publishers, 1998.

