
A Flexible Instruction Generation Framework for

Extending Embedded Processors

Nikolaos Kavvadias and Spiridon Nikolaidis

Section of Electronics and Computers, Department of Physics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

Email: {nkavv,snikolaid}@physics.auth.gr

Abstract— Modern platform-based design involves the domain-
specific extension of embedded processors to fit customer re-
quirements. To accomplish this task, the possibilities offered
by recent extensible processors for their instruction set and
microarchitectural customization have to be exploited. In this
paper, a design approach that encapsulates automated work-
load characterization and highly-controllable instruction and
application-specific functional unit (AFU) generation is utilized
for fast extension space exploration of embedded processors. It is
proved that a relatively small number of unique AFUs is needed
in order to support embedded applications from the MiBench
and Powerstone suites. It is possible to achieve 1.8× to 6.8×
performance improvements although further possibilities such
as subword parallelization are not currently regarded.

I. INTRODUCTION AND RELATED WORK

Modern design flows for embedded processors (e.g. for

consumer applications) are subjected to several constraints

stemming out of diverse and often conflicting requirements

for programmable systems-on-chip (SoCs): low power con-

sumption, performance in a given application domain, code

size and acceptable overall system cost.

The challenge of delivering the optimum balance between

efficiency and flexibility can be met with the utilization

of customizable processors [1], [2] adhering to the con-

figurable/extensible processor paradigm. Configurability lies

in tuning architectural parameters (e.g. cache sizes) while

extensibility of a processor comes in modifying the instruction

set architecture by adding custom instructions. There exist

two basic themes for architecture extension: tight integration

of custom functional units and storage [3] or loose coupling

of hardware accelerators to the processor through a bus

interface [4]. Focusing on the former case, this may require

the introduction of custom units to the execution stage(s) of

the processor pipeline and this should be accounted in the

architecture template of the processor.

Last years, a number of research efforts have regarded the

automated application-specific extension of embedded proces-

sors [5]–[9]. A few open instruction generation frameworks

exist [10]; an advantage of their work being delivering a

format for storing, manipulating and exchanging instruction

patterns. In order to use their pattern library (Pattlib), the

potential user should adapt his compiler for generating and

manipulating patterns in the cumbersome GCC RTL (Register

Transfer Language) intermediate representation.

Application-specific instructions have been generated for

the Xtensa configurable processor [7] that may comprise

of VLIW (Very Long Instruction Word), SIMD (Single-

Instruction Multiple-Data) or fused (chained) RTL operations.

However, as induced by the architecture template of Xtensa,

control-transfer instructions (cti) are not considered to be

included in the resulting complex instructions. A sophisticated

framework for the design of tightly-coupled custom coprocess-

ing datapaths and their integration to existing processors has

been presented in [6]. While providing a complete solu-

tion to programmable acceleration, their work still has some

drawbacks: the possibility of direct communication to fast

local data memory is excluded and for this reason, beneficial

addressing modes cannot be identified. In [8] a multiple-

output instruction generation algorithm is presented which se-

lects maximal-speedup convex subgraphs for each basic block

data-dependence graph (DDG), with worst case exponential

complexity, while [5] added path profiling to extend beyond

basic block scope. An important conclusion was that useful

instruction identification scope does not extend further than

2 or 3 consecutive basic blocks. Still, memory operations

are not regarded in the formation of complex instructions,

while pattern identification can only take place post register

allocation.

In this paper, a custom instruction/AFU generation and

selection prototype framework is presented. The method is

based on an extension of the MaxMISO algorithm [9], which

identifies the maximal non-overlapping connected subgraphs

of the DDGs of basic blocks in application programs that

produce a single computation result. In this context, two

different types of node constraints named node-inclusion and

boundary-node constraints are introduced while additional

parameterization options of the instruction generation process

have been integrated in the algorithm (selectable number of

nodes, inputs, arithmetic and other optimizations).

II. INSTRUCTION/AFU GENERATION FRAMEWORK

Our instruction generation approach has been implemented

in context of a new framework named IAG (Instruction/AFU

Generation framework) illustrated in Fig. 1. A CDFG IR is

used for representing control and data-dependence, which is

based on the SUIF/MachSUIF SUIFvm IR [11], [12]. The

resulting IR can use SUIFvm, SUIFrm (introducing allocable

SUIF

Instruction/AFU

generation

Performance

(cycle-estimate)

AFU hardware

cost estimations

C/C++

MachSUIF

analyses/optimizations

optimized IR in

CDFG form

SUIFvm code

Custom instruction/AFU

selection

Selected instruction/AFU patterns

Backend

interfaces

vcg/dot
 ANSI C

Instrumentation

binutils as + ld

simulation
m2c

MachSUIF

backend

Basic-block

profiling results

SUIFrm or ARMv4

CDFG

AFU in VHDL

RTL synthesis

SUIFvm

Fig. 1: The IAG framework.

resources to SUIFvm) or ARMv4 [13] instruction nodes. For

SUIFvm and SUIFrm, complete procedure entry and exit se-

quences have not been inserted at this stage, since stack frame

layout is highly processor dependent. However, an instruction-

accurate ArchC [14] model for the SUIFrm architecture has

been implemented that supports input/output argument register

banks to which the corresponding operands are mapped by ap-

propriate pseudo-instructions. ARMv4 CDFGs carry machine

dependencies that could be exploited for porting application

binaries to revised ARM ISAs or synthesizing a hardware-

assisted RTOS for a given embedded processor. The Mach-

SUIF passes perform either IR analyses or optimizations to

optimize the SUIFvm/ARM assembly.

The pattern generation process takes place on the resulting

IR, followed by custom instruction selection which is also

implemented within IAG. The most important features of

IAG’s pattern identification and generation engine involve the

enforcement of controlling parameters/constraints that can be

divided into three categories: a) maximum value parameters,

b) architecture template parameters and c) configuration and

interoperability settings. Table I shows the notations and the

descriptions for the configuration parameters that are available

to the IAG framework user.

The two types of node constraints are: Type-A or boundary-

node and Type-B or node-inclusion. A Type-A constraint

prohibits growing an instruction cluster beyond the specified

instruction, typically applied to force the generation of com-

plex addressing modes. A Type-B constraint will not permit

TABLE I: Most important configuration parameters in IGF.
Configuration

parameter
Description

Maximum value parameters

ni Max. input operands per MISO

nn Max. num. instructions comprising a MISO

limit-[a|i|c] Limit on total area (a), number of custom
instructions (i) or max. cycles (c) per MISO

Architectural parameters

constr-[a|b] {list} Boundary node or node inclusion con-
straints on the given opcode list

isa-context ISA context (SUIFvm, SUIFrm or ARMv4)

const-mul Single constant multiplication optimization

Various configuration and interoperability settings

isom-{c}-{sc}-{ssc} Graph or graph-subgraph isomorphism
({c}) employing selected method ({sc}) on
the generated patterns. {ssc} defines match-
ing attributes

isel[-{pf}] Custom instruction selection (for priority
function {pf} in case of greedy selection)

gen-{bend}-{clst} Export CDFGs of a cluster type {clst} (ba-
sic blocks or MISOs) to a backend format
(vcg [15], dot [16], tac, and cdfg [17]).

the inclusion of the specified instruction in the MaxMISO

under build, usually applied to cti instructions.

Regarding custom instruction selection, an optimal (for-

mulated as 0-1 knapsack problem and solved via dynamic

programming) and a greedy method based on predefined

priority metrics have been implemented. The supported graph

isomorphism and graph-subgraph isomorphism algorithms are

part of the VFLib2 graph matching library [18]. Applying

graph isomorphism identifies the unique custom instruction

patterns, while applying graph-subgraph isomorphism is used

for identifying the patterns corresponding to unique AFUs,

servicing a subset of generated instructions. The basic two

ISA configurations are: single opcodes and resource classes.

Different instructions with opcodes of the same class can be

matched and considered to be implemented on the same basic

resource.

The IAG framework also provides interfaces to external

visualization (vcg, dot) and backend (three-address C, CDFG

[17]) engines for translating the generated custom instruc-

tions/AFUs for visualization, co-simulation, hardware estima-

tion, or scheduling purposes.

III. AUTOMATED DESIGN SPACE EXPLORATION SCENARIOS

FOR EMBEDDED PROCESSOR EXTENSION

At this point, we will evaluate the proposed approach for

instruction-set extension of embedded processors. For the

experiments we have evaluated a set of embedded applications

consisting of 3 cryptographic applications (gost, rc5, sha),

6 media-oriented applications (3ss, adpcm dec, adpcm enc,

jpeg decode, mpeg4 senc, susan), and 3 control-dominated

applications (dijkstra, patricia, stringsearch). Most of these

applications (7 out of 12) have been collected from the

MiBench embedded benchmarks [19], while jpeg decode is

included in Powerstone [20]. All applications were compiled

to SUIFvm code.

1

2

3

4

5

6

7

gost

rc
5

sh
a

3s
s

ad
pcm

_d
ec

ad
pcm

_e
nc

jp
eg

_d
ec

ode

m
peg

4_
se

nc

su
sa

n

dijk
st

ra

pat
ric

ia

st
rin

gse
ar

ch

S
p

e
e

d
u

p

2 inputs
 3 inputs
 4 inputs
 5 inputs

6 inputs
 8 inputs
 inputs

Fig. 2: Application speedup for different number of inputs.

The following figures (Fig. 2- 4) present the experimental

results (execution cycles and area) on generation of custom

instructions/AFUs under 3 exploration scenarios: a) instruction

generation for different number of inputs, b) different node-

related constraints, and c) greedy instruction selection under

different priority functions.

A. Instruction generation for different number of inputs

Fig. 2 shows the estimated speedups for the examined

applications over the set of different number of inputs: Ni =
{2, 3, 4, 5, 6, 8,∞} under the node constraints of case C,

defined in Fig. 3. Area and delay metrics are normalized to

the values for a 32×32-bit single-cycle multiplier returning a

64-bit result (not truncated).

By observation of Fig. 2 it can be deduced that the re-

lationship among the achieved speedups and increasing the

input size limit is monotonous but the amount of incremental

speedup is completely application-dependent. This conclusion

supports the necessity of detailed exploration in order to

extract the speedup potential for each application.

B. Instruction generation under different node constraints

As mentioned in Section II, our method is able to adapt to

different architecture templates by imposing required limita-

tions on selectable operation types during MISO formation.

For example, a node-inclusion constraint should be forced

on cti instructions for processor templates that do not permit

altering the control transfer mechanisms. If allowed, the in-

struction fetch path is modified and the effect on the processor

cycle time is less predictable than in the case that instruction

extensions reside solely on the execution pipeline stage(s) of

the processor. Fig. 3 presents results on studying the effect

of node constraints on instruction generation for the examined

benchmarks. Each node constraint is given in the form: {Type-

A list}/{Type-B list} where ‘Type-L list’ denotes the opcode

subset subjected to the specified constraint.

In Fig. 3 it is observed that the completely unconstrained

case performs better in average to the other alternatives with

an estimated average of 28%, with the exceptions of 3ss

(Fig. 3(a)), and mpeg4 senc, susan (Fig. 3(b)) for which the

optimal performance metrics are obtained for cases E, B and

F, respectively. This outcome can be interpreted by the fact

1

1.5

2

2.5

3

3.5

4

gost

rc
5

sh
a

3s
s

ad
pcm

_d
ec

ad
pcm

_e
nc

jp
eg

_d
ec

ode

m
peg

4_
se

nc

su
sa

n

dijk
st

ra

pat
ric

ia

st
rin

gse
ar

ch

S
p

e
e

d
u

p

A: none / none
 B: none / cti

C: memcpy / cal,ret
 D: str,memcpy / cti

E: lod,str,memcpy / cti
 F: none / cti,lod,str,memcpy

(a) Ni = 4

1

2

3

4

5

6

7

gost

rc
5

sh
a

3s
s

ad
pcm

_d
ec

ad
pcm

_e
nc

jp
eg

_d
ec

ode

m
peg

4_
se

nc

su
sa

n

dijk
st

ra

pat
ric

ia

st
rin

gse
ar

ch

S
p

e
e
d

u
p

A: none / none
 B: none / cti

C: memcpy / cal,ret
 D: str,memcpy / cti

E: lod,str,memcpy / cti
 F: none / cti,lod,str,memcpy

(b) Ni = 8

Fig. 3: Application speedup for alternative node constraints.

that ctis have the lowest priority in a topologically-sorted

instruction ordering in a basic block. Thus, it is often for

custom MISO instructions to be grown with a cti instruction

as their sink node, with more data processing instructions

being excluded from the MISO due to the input size limit

being reached. If the cti was omitted, it is possible, that the

algorithm would select larger computation structures for the

same input size limit. Also, the introduction of complex ctis

(case A) provides a speedup improvement of 25.9% over case

B. However, it should be noted that the inclusion of call/return

instructions may incur significant performance overhead in

terms of storage resources (e.g. PC return stack, register

windows) that cannot be directly accounted in the current

version of the instruction/AFU generation tool.

C. Custom instruction selection

For implementing a greedy solution to the custom instruc-

tion selection problem, the key idea is to assign priorities

to the custom instruction patterns and the more proficient

instances are chosen by starting with the highest prioritized

one. We have used the following two priority functions: (1)

Cycle gain : Priority(
∑

j Ci,j) =
∑

j{Pi,j × fi,j}, that

forces for best performance regardless AFU area requirements

and (2) Cycle gain/Area : Priority(
∑

j Ci,j) =
∑

j{(Pi,j ×
fi,j)}/Ai, where Ci,j denotes the i-th candidate instruction

with j different instances in the entire program, fi,j the basic

block execution frequency metric associated with the specific

0

10

20

30

40

50

60

70

80

90

100

0
 5
 10
 15

Number of AFU patterns

%
 s

p
e
e
d

u
p

0

1

2

3

4

5

6

7

8

9

10

A
re

a
 (

M
A

U
)

% speedup for: 'Cycle gain'
 % speedup for: 'Cycle gain/Area'

Area for: 'Cycle gain'
 Area for: 'Cycle gain/Area'

Fig. 4: Custom instruction selection under priority metrics for

sha (Ni = ∞).

instance, and Ai the area cost for the candidate. These priority

functions force different objectives: function (1) maximizes

performance gain for each isomorphic candidate over the entire

program when area is not an issue while (2) quantifies the

available area budget as well.

A summary of the measurements for the application set is

given in Table II. Taking sha for example, although tens of

candidate instructions are identified, only a few (9 and 22

for achieving 95% and total maximum speedup, respectively)

contribute significantly to their execution time for either pri-

ority function. The number of required extension instructions

for reaching the 95% speedup levels ranges from 3 (susan) to

16 (jpeg decode), while the area requirement is less than 5.5

multiples of a 32-bit array multiplier for all applications with

the exception of mpeg4 senc which demands 8.4 multiplier

area units (MAU).

Finally Fig. 4 directly compares the pros and cons for the

priority functions used in the custom instruction selection

process. For the sha application, there exists a profound

speedup benefit for priority function ‘Cycle gain’ against

‘Cycle gain/Area’, since any differences in area occupation are

relatively small while 2 less instructions need to be selected

in order to obtain 95% of overall speedup for the former

objective.

IV. CONCLUSIONS

In this paper, an instruction and application-specific func-

tional unit (AFU) generation flow is presented for automat-

ically identifying beneficial architectural extensions of em-

bedded processors. For this reason, a prototype instruction

generation engine allowing multi-dimensional design space

explorations of custom instructions has been implemented.

We have performed automated explorations regarding the

maximum number of input operands, different node-related

constraints, and instruction selection decisions in the search for

optimal custom instructions and their corresponding AFUs for

a diverse application set. It was found that speedups ranging

from 1.8× to 6.8× can be achieved over implementing the

same applications on an unaugmented base processor.

TABLE II: Speedup-AFU area for ‘Cycle gain’/‘Cycle

gain/Area’ (average case of Ni = {4, 8,∞}).

Benchmark
0.95×
max.

speedup

Area
(MAU)

At max.
speedup

Area
(MAU)

gost 8/10 1.827/1.471 16 2.532

rc5 8/9 3.087/3.087 23 7.771

sha 9/12 2.964/2.976 22 6.050

3ss 5/6 2.836/2.892 28 17.479

adpcm dec 6/6 0.527/0.527 8 0.771

adpcm enc 8/8 0.356/0.356 10 0.835

jpeg decode 14/16 5.372/4.529 35 12.084

mpeg4 senc 9/12 8.420/5.893 50 30.221

susan 3/3 2.656/2.656 16 12.102

dijkstra 4/4 0.864/0.864 10 1.573

patricia 4/4 0.441/0.441 4 0.441

stringsearch 5/7 0.909/0.851 11 1.703

REFERENCES

[1] ARC cores. [Online]. Available: http://www.arccores.com
[2] R. Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE

Micro, vol. 20, no. 2, pp. 60–70, March-April 2000.
[3] Altera Nios-II home page. [Online]. Available: http://www.altera.com/

products/ip/processors/nios2/
[4] Xilinx home page. [Online]. Available: http://www.xilinx.com
[5] P. Yu and T. Mitra, “Scalable custom instructions identification for

instruction-set extensible processors,” in Proc. Int. Conf. on Compilers,

Architectures and Synthesis for Embedded Systems, September 2004.
[6] N. Clark, J. A. Blome, M. L. Chu, S. A. Mahlke, S. Biles, and

K. Flautner, “An architecture framework for transparent instruction set
customization in embedded processors,” in Proc. 32nd Int. Symp. on

Computer Architecture, Madison, Wisconsin, USA, June 2005, pp. 272–
283.

[7] D. Goodwin and D. Petkov, “Automatic generation of application
specific processors,” in Proc. Int. Conf. on Compilers, Architectures and

Synthesis for Embedded Systems, San Jose, California, USA, October
2003, pp. 137–147.

[8] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in Proc.

40th ACM/IEEE Design Automation Conference, Anaheim, California,
June 2003, pp. 256–261.

[9] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami, “A DAG based design
approach for reconfigurable VLIW processors,” in Proc. of the Design,

Automation and Test in Europe Conf., Munich, Germany, March 1999,
pp. 778–779.

[10] Pattlib. [Online]. Available: http://www.lsc.ic.unicamp.br/pattlib/
[11] SUIF. [Online]. Available: http://suif.stanford.edu/suif/suif2/
[12] Machine-SUIF research compiler. [Online]. Available: http://www.eecs.

harvard.edu/hube/research/machsuif.html
[13] G. Théoduloz and D. S. Gracia, ARM backend for Machine SUIF.

[Online]. Available: http://lapwww.epfl.ch/dev/
[14] The ArchC resource center. [Online]. Available: http://www.archc.org
[15] G. Sander, “Graph layout through the VCG tool,” in Proc. DIMACS Int.

Workshop on Graph Drawing, Berlin, Germany, 1994, pp. 194–205.
[16] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo, “A technique

for drawing directed graphs,” IEEE Trans. on Software Engineering,
vol. 19, no. 3, pp. 214–230, May 1993.

[17] CDFG toolset. [Online]. Available: http://poppy.snu.ac.kr/CDFG/cdfg.
html

[18] P. Foggia, The VFLib Graph Matching Library, 2nd ed., March 2001.
[Online]. Available: http://amalfi.dis.unina.it/graph/db/vflib-2.0

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. of the 4th annual IEEE Int. Wshp. on

Workload Characterization, December 2001.
[20] L. H. Lee, W. Moyer, and J. Arends, “Instruction fetch energy reduction

using loop caches for embedded applications with small tight loops,” in
Proc. Int. Symp. on Low Power Electronics and Design, San Diego, CA,
August 1999.

