
Application Analysis with Integrated Identification of
Complex Instructions for Configurable Processors

Nikolaos Kavvadias and Spiridon Nikolaidis

Section of Electronics and Computers, Department of Physics,
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

nkavv@skiathos.physics.auth.gr

Abstract. An extensible and configurable processor is a programmable plat-
form offering the possibility to customize the instruction set and/or underlying
microarchitecture. Efficient application analysis can identify the application pa-
rameters and instruction extensions that would influence processor perform-
ance. An application characterization flow is presented and demonstrated on the
Wavelet/Scalar Quantization image compression application. In this context,
novel application metrics are identified as the percentage cover, maximum cy-
cle gain for each basic block and candidate-induced application speedup due to
possible complex instructions. Furthermore, evaluating the instruction candi-
dates during application analysis is proposed in order to establish a link with
subsequent design space exploration steps.

1 Introduction

Embedded processors suitable for consumer applications, present interesting architec-
tural refinements, in order to support power-hungry algorithms e.g. for high band-
width wireless communications or video compression and decompression [1]. The
portability of these systems makes energy consumption a critical design concern. For
successfully implementing software applications on domain-specific processors under
tight time-to-market constraints, requirements of high flexibility and programmability
have also to be met.

The challenge of delivering the optimum balance between efficiency and flexibility
can be met with the utilization of customizable processors. Most commercial offer-
ings fall in the category of configurable and extensible processors [2],[3]. Configura-
bility lies in either a) setting the configuration record for the core (regarding different
cache sizes, multiplier throughput and technology specific module generation) or b)
allowing modifications on the original microarchitecture template. In the first case,
the end user selects the synthesis-time values for certain parameters of the processor
core [4]. The second case requires that the basic architecture of the core is modifiable.
For instance, the flexible pipeline stage model employing local control in [5] enables
altering the pipeline depth of the processor. Extensibility of a processor comes in
modifying the instruction set architecture by adding single-, multi-cycle or pipelined
versions of complex instructions. This may require the introduction of custom units to
the execution stage of the processor pipeline and this should be accounted in the ar-

chitecture template of the processor. The instruction extensions are generated either
automatically or manually from a self-contained representation of the application
code, assuming a structural and instruction set model of the processor [6].

Characterizing the application workload is a fundamental step in microprocessor
design, since based on this analysis, the processor designer can decide the appropriate
configuration and the required instruction extensions of a customizable core for
achieving an advantageous performance-flexibility tradeoff. In this paper, an ap-
proach to application analysis is presented for extracting application parameters. The
framework is based on the freely available SUIF/Machine SUIF (MachSUIF) com-
piler infrastructure [7]. Opposed to previous approaches, complex instruction candi-
dates are identified at the stage of application analysis, since such information can be
used for pruning the design space of possible instructions in an Application-Specific
Instruction set Processor (ASIP) design flow. Static and dynamic characteristics of the
application are also extracted and their impact on candidate identification is investi-
gated. The metrics of percentage cover, maximum basic block cycle gain and candi-
date-induced application speedup that quantify the impact of including specific com-
plex instructions are given. Overall, it is argued that generating an initial set of
instruction candidates should be an integrated step of the application characterization
flow to guide subsequent design space exploration steps.

The rest of this paper is organized as follows. The related work in application
analysis and candidate instruction (template) identification is summarized in Section
2. Each step of the application characterization flow is described in Section 3 along
with the use of existing and the associated in-house tools we have developed. Section
4 discusses the application of the proposed approach on the Wavelet/Scalar Quantiza-
tion (WSQ) image compression algorithm and the corresponding results. Finally, Sec-
tion 5 summarizes the paper.

2 Related Work

An important issue in domain-specific processor design is the task of application
analysis extracting both static and dynamic metrics for the examined applications.
Although important in ASIP synthesis, the effect of introducing candidate instructions
to accelerate processor performance on a given application set is not adequately ex-
amined in context of application analysis in the vast majority of related work.

In [8] both the application and a specification of the processor are input to an esti-
mation framework based on SUIF. A number of parameters characterizing the appli-
cation are extracted: the average basic block size, number of multiply-accumulate op-
erations, ratio of address to data computation instructions, ratio of I/O to total
instructions, register liveness, and degree of instruction-level parallelism. Compared
to [8], our approach searches for all candidate instructions by identifying fully-
connected subgraphs in the DFG of each basic block, instead of restricting the search
to a specific complex instruction type. Also, their tool has been designed for processor
selection and not to assist ASIP synthesis, which explains the fact of using coarse pa-
rameters extracted from the instruction mix. These are intended as thresholds for se-

lecting or rejecting a specific processor while our method performs the analysis in a
much finer level.

A performance estimator using a parameterized architecture model has been devel-
oped in [9]. While the work presented is significant, the method has been constructed
with a specific processor type in mind. E.g. the assumed addressing modes are spe-
cific to DSP processors. Our method can identify non-DSP specific complex address-
ing schemes, as shifter-based addressing modes similar to those of the ARM7 proces-
sor.

Multimedia benchmark suites have been presented in [10],[11] along with their
characterization profile. In [11] the popular MediaBench suite is introduced, charac-
terized with metrics suitable for general-purpose processors. The benchmark suite in
[10] is comprehensive with a thorough study, however also assuming a GPP template.
Again, guidelines to finding the appropriate extension instructions suitable to multi-
media-enhanced GPPs are not provided.

3 The Proposed Approach for Application Analysis and
Characterization

It is often at early stages in processor design, that the compilers and simulators for the
entire range of applicable processor architectures one needs to consider, are not avail-
able [8]. In order for the application characterization results to be useful to the spec-
trum of evaluated microarchitectures, a common estimation platform is required. We
propose using the MachSUIF intermediate representation (IR) for this purpose. In
MachSUIF, the IR description uses the SUIF virtual machine instruction set
(SUIFvm), which assumes that the underlying machine is a generic RISC, not biased
towards any existing architecture.

In this case, the application is decomposed into its IR consisting of operations with
minimal complexity, best known as primitive or atomic instructions. It is possible to
organize the IR description of the application into Control Data Flow Graphs
(CDFGs) with primitive instructions as nodes and edges denoting control and data
dependencies. In MachSUIF, the executability of the original C program is retained at
the level of the SUIFvm instruction set. The corresponding SUIFvm code consists the
executable intermediate representation [12] of the benchmarked program. Dynamic
characterization can be performed on the host machine by executing the resulting C
program, generated by translating the SUIFvm back to C code.

The proposed application characterization flow is shown in Figure 1. Shaded
blocks on the diagram distinguish our in-house tools from the available passes of the
infrastructure. In the remaining paragraphs of this section, we detail the steps of the
application characterization procedure.

In Step 1, the input C code for the application is passed through the c2s pass of the
SUIF frontend. In this stage, the application is preprocessed and its SUIF representa-
tion is emitted. In the second step, do_lower, several machine-independent transfor-
mations are performed as dismantling of loop and conditional statements to low-level
operations. The resulting description is termed as lower SUIF in contrast to higher

SUIF generated by c2s. Step 3 is needed to translate the lower SUIF code into the
SUIFvm representation. For this task, the s2m compiler pass is used.

The IR code has not been scheduled and has not passed through register allocation,
which is important so that false dependencies within the data flow graphs of each ba-
sic block are not created [13]. Step 4 performs architecture-independent optimizations
on the IR, such as a) peephole optimization, b) constant propagation, c) dead code
elimination, and if decided, d) common subexpression elimination (CSE) to construct
the optimized SUIFvm description.

Application written in

ANSI C

instrmix

basic block

frequencies

CDFG of the

application

register liveness

report

c2s

do_lower

Higher SUIF

Lower SUIF

s2m

machine-independent

optimizations

 peephole optimization

 constant propagation

 common subexpression elimination

 + dead code elimination after each

 pass

optimized IR

in CFG form

dagconstruct halt_svm liveanalysis

dynamic

instruction mix

avg. basic

block sizes

m2c

SUIFvm code

(unoptimized IR)

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

Fig. 1. The proposed application analysis and characterization flow

Peephole optimization suppresses redundant move operations and is used to re-
move unnecessary type casting (CVT) operations that MachSUIF has the tendency to
produce after the application of an active pass. The usefulness of CSE depends on the
algorithm applied for complex instruction generation. Specifically, if overlapped tem-
plates are permitted during instruction generation, CSE will not prohibit the identifi-
cation of any beneficial candidate. However, if a faster algorithm is used that only al-
lows orthogonal covers, some opportunities will be missed. Assume a basic block

with two instances of the same subexpression, e.g. a subgraph comprised of two
primitive operations, placed in the core of two different single-cycle complex instruc-
tions consisting of three and four primitives respectively. If the second subexpression
is eliminated, then the second instruction candidate could only consist of two primi-
tives.

Finally, during Step 5, specific static and dynamic metrics are gathered. The corre-
sponding analysis passes accept SUIFvm in CFG form.

The dagconstruct pass parses each node in the CFG and constructs the correspond-
ing CDFG. Note that instructions involving memory operands (as in CISC-like ma-
chines) require additions to some libraries of the infrastructure. In this case, the dag-
construct pass should be updated to reflect these changes introduced to the suifvm
library.

A pass for generating the static instruction mix, instrmix, has also been developed.
By using the execution frequencies for the basic blocks of the application, the dy-
namic instruction mix can be easily calculated. For calculating the execution frequen-
cies, the SUIFvm code is translated to single-assignment style C using the m2c pass.
Pass halt_svm is used to instrument the C code by adding counters at the start of each
basic block.

The liveanalysis pass is based on the cfa library and calculates the number and
names of registers that are alive at basic block boundaries. The corresponding results
help the designer decide the register file size.

4 Application analysis for the Wavelet/Scalar Quantization image
compression algorithm

The case study application is based on a wavelet image compression algorithm [14]
and is part of the Adaptive Computing Benchmarks [15], which are used to evaluate
specific characteristics of reconfigurable architectures. Reportedly, the selected
benchmark is used to stress reconfigurability by splitting execution time among sev-
eral kernels. A compliant implementation of the WSQ algorithm is required to per-
form four standard steps: wavelet transform, quantization, run-length encoding and
entropy coding (for the encoder part). The entropy encoding stage is realized with a
Huffman encoder. In our paper, the application analysis framework is used to extract
characteristics for both the encoding and decoding algorithms.

4.1 Instruction mix

The dynamic instruction mix provides a classification of the application instructions
into types based on the functional units used. Instructions are divided into integer and
floating-point, while each of those has distinct subtypes: load and store, arithmetic,
logical, shift, multiply, division, unconditional and conditional branch, call/return and
remaining instructions. Figure 2 shows the instruction mix statistics for the compress
and decompress applications, which correspond to the WSQ encoder and decoder, re-
spectively. Note that WSQ is a pure integer application.

0

10

20

30

40

50

ar
ith

lo
g
ic
a
l

sh
ift

m
ul
tip
ly

di
vi
si
on

lo
a
d

st
or
e

ub
r

cb
r

ca
ll/
re
tu
rn

ot
he
r

N
u
m
b
e
r
o
f
in
s
tr
u
c
ti
o
n
s
 (
m
il
li
o
n
s
)

compressimage decompressimage

Fig. 2. Instruction mix statistics for the WSQ algorithm

It is clear that arithmetic operations dominate the instruction mix of the applica-
tions. Also, decompress has higher computational complexity than compress since it
requires higher amount of arithmetic and load instructions. The ratio of branches to
the total instructions is very small (9.8%) which means that higher execution frequen-
cies are encountered for relatively large basic blocks. This conclusion is supported by
the results of Section 4.4.

4.2 Average basic block size

The basic block sizes are easily calculated simultaneously to the static instruction
mix. It is found that 3.98 and 4.48 instructions consist the average basic block for the
compress and decompress applications, respectively. At a first glance, this result does
not leave much room for performance benefits by exploiting complex instruction can-
didates within the same basic block. However, as it will be shown, heavily executed
portions of the code comprise of rather large basic blocks.

4.3 Register liveness analysis

It is found that decompress has lower register pressure with a maximum of 8 saved
registers while compress requires 11 saved registers. These results constitute a lower
bound on the required local storage resources, more specifically the number of alloc-
able registers of the architecture, for the WSQ algorithm.

4.4 Basic block frequencies

Figure 3 indicates the execution frequencies and sizes for the most heavily executed
basic blocks for compress and decompress. Each basic block is assigned a unique
name of the form: <file_name>.<function_name>.<basic_block_number>.

0

500000

1000000

1500000

2000000

2500000

3000000

co
m

pr
es

s.
bl

oc
k_

qu
an

tiz
e.

5

co
m

pr
es

s.
bl
oc

k_
qu

an
tiz

e.
17

co
m

pr
es

s.
bl
oc

k_
qu

an
tiz

e.
18

co
m

pr
es

s.
bl
oc

k_
qu

an
tiz

e.
19

co
m

pr
es

s.
bl
oc

k_
R
LE

_e
nc

od
e.

6

co
m

pr
es

s.
bl
oc

k_
R
LE

_e
nc

od
e.

7

co
m

pr
es

s.
en

tro
py

_e
nc

od
e.

3

co
m

pr
es

s.
fc

df
22

.3

co
m

pr
es

s.
fc
df

22
.6

co
m

pr
es

s.
fc
df

22
.9

de
co

m
pr

es
s.
bl
oc

k_
de

qu
an

tiz
e.

9

de
co

m
pr

es
s.
bl
oc

k_
de

qu
an

tiz
e.

16

de
co

m
pr

es
s.
bl
oc

k_
de

qu
an

tiz
e.

18

de
co

m
pr

es
s.
hu

fd
ec

.2

de
co

m
pr

es
s.
hu

fd
ec

.3

de
co

m
pr

es
s.

bc
df

22
.3

de
co

m
pr

es
s.

bc
df

22
.6

de
co

m
pr

es
s.
bc

df
22

.9

E
x
e
c
u
t
io
n
 f
r
e
q
u
e
n
c
y

0

5

10

15

20

25

30

35

40

45

50

In
s
t
r
u
c
t
io
n
s
 p
e
r
 b
a
s
ic
 b
lo
c
k

Execution f requency

Instructions per basic block

Fig. 3. Execution frequencies and sizes for the heavily executed basic blocks

It is evident from Figure 3 that there exists space for achieving speedup in the per-
formance critical basic blocks since their size is significantly above average.

4.5 Data flow graph analysis for identifying candidate instruction extensions

The dagconstruct pass referred in the beginning of this section, generates DFGs for
each basic block. Then, fully-connected subgraphs of these DFGs are identified as po-
tential complex instructions. A measure of success for the selection of complex in-
structions using orthogonal covers is given by the percentage cover factor determined
by the proportion of the number of instructions after selection to the number of in-
structions prior selection. A speedup factor, maximum basic block cycle gain, is also
introduced and is calculated as the product of the maximum performance gain in cy-
cles (assuming no data hazards and spills to memory) with the execution frequency of
the specified basic block. An estimate on the performance impact of selecting a set of
isomorphic patterns is given by the candidate-induced application speedup metric de-
fined as the application speedup due to selecting the complex instruction. At this
point, calculating the latter metric is not automated, and for this reason it is evaluated
on the performance-critical basic blocks of the application. Since only 10 basic blocks
incorporate the 85.3% of the instructions for compress and 8 basic blocks the 97.3%
of the instructions for decompress, the extracted results are valid.

Table 1 shows the percentage cover factor and maximum cycle gain for the per-
formance-critical basic blocks. In columns 2 and 3, the number of instructions prior
and after complex instruction matching is given. The percentage cover and maximum

gain values are given in columns 4 and 5 respectively. The average percentage cover
is 83.2%.

Table 1. Template selection results for the performance-critical basic blocks

Basic block ID # Instr.
(prior select.)

Instr.
(after select.)

% cover Maximum
cycle gain

compress.block_quantize.5 7 3 85.7 1048576
compress.block_quantize.17 7 3 85.7 1048576
compress.block_quantize.18 5 2 80.0 786432
compress.block_quantize.19 10 3 70.0 1806336
compress.block_RLE_encode.6 8 3 100.0 1290285
compress.block_RLE_encode.7 7 5 57.1 516096
compress.entropy_encode.3 7 4 57.1 786438
compress.fcdf22.3 24 9 87.5 5160960
compress.fcdf22.6 47 15 91.5 10895360
compress.fcdf22.9 23 9 82.6 4816896
decompress.block_dequantize.9 10 5 70.0 983040
decompress.block_dequantize.16 10 4 100.0 393216
decompress.block_dequantize.18 14 4 100.0 655360
decompress.hufdec.2 6 2 100.0 8000004
decompress.hufdec.3 20 11 70.0 18000000
decompress.bcdf22.3 23 9 82.6 4816896
decompress.bcdf22.6 42 13 92.9 9873920
decompress.bcdf22.9 25 10 84.0 5160960

In Table 2, candidate-induced application speedups are given in columns 2, 3 for

the 23 unique (non-isomorphic) complex instructions that were identified. Estimates
of the implementation details for these instructions are shown in column 4.

Table 2. Candidate-induced speedups for the compress and decompress applications

Application name compress decompress

Candidate instruction % candidate-induced
speedup

% candidate-induced
speedup

Possible
implementation

mla 3.43 0.68 Multi-cycle/pipelined
lod_add_lsl 26.65 17.07 Single-cycle
stri_lsl 1.70 0.91 Single-cycle
bne_imm 0.57 0.08 Single-cycle
beq_inc 1.14 n.a. Single-cycle
stri_add 1.73 n.a. Single-cycle
mul_lsl 0.76 0.40 Multi-cycle/pipelined
str_lsl 15.85 5.72 Single-cycle
lsl_mla 1.51 n.a. Multi-cycle/pipelined
add_sub 0.75 n.a. Single-cycle
lod_lsl_inc 3.00 1.58 Single-cycle

lod_lsl_dec 2.25 n.a. Single-cycle
add_asr_add 1.50 n.a. Single-cycle
add_inc_mul 1.51 0.80 Multi-cycle/pipelined
bge_imm n.a. 2.32 Multi-cycle/pipelined
ldc_and_sl n.a. 2.32 Single-cycle
and_sli n.a. 4.63 Single-cycle
lsl_inc n.a. 2.32 Single-cycle
str_addi n.a. 4.63 Single-cycle
add_asr_sub n.a. 0.79 Single-cycle
add_add n.a. 0.39 Single-cycle
mul_add_lsl n.a. 1.18 Multi-cycle/pipelined
lod_lsrv n.a. 6.95 Single-cycle

For both applications, load and store instructions as lod_add_lsl, str_add_lsl and

lod_lsrv implementing shifter-based addressing modes provide the most significant
speedup while not requiring any change to the memory access scheme. The genera-
tion of such specialized addressing modes although currently disallowed in [13],
could be safely accounted in their DFG explorer.

Figure 4 shows a portion of the generated templates. A restriction of maximum 3
input and 1 output register operands has been applied to encompass for single register
file limitations that apply to a generic RISC. The majority of these templates, for ex-
ample (i), (ii), (iv), could be implemented as single-cycle instructions since 3 or more
arithmetic (excluding multiplication and division), logical or shift-by-immediate op-
erations would fit in a single cycle [13]. Complex instruction (iii) incorporates the
multiply operation which almost certainly affects the processor cycle time. A multi-
cycle or pipelined realization for this instruction is worthy investigating. Multi-cycle
instructions may be acceptable even though the processing throughput against using
their primitive instruction sequence may not be improved, since power consumption
related to instruction fetch is significantly reduced.

It is possible that instruction templates can be merged into superset instructions
that would be served on the same hardware. For example, templates (i), (ii), and (iv),
make use of up to 2 adder/subtractors and 1 shifter, so that assuming appropriate con-
trol, a single instruction for these could be implemented. If a load/store operation is
also part of the instruction, it must be performed on a different pipeline stage.

Rsrc1 #2

Rsrc2

Rdst

LOD

Rsrc1 Rsrc2

Rsrc3

Rdst

Rsrc1 Rsrc2

#3

Rdst

Rsrc3

(i) add_sub (ii) lod_add_lsl (iv) add_asr_add(iii) lsl_mla

Rsrc1 #2

Rsrc2

Rdst

Fig. 4. Candidate instruction examples

5 Conclusions

In this paper, an application analysis flow is proposed for evaluating the characteris-
tics of applications running on configurable processor platforms. For this reason, an
open-source compiler infrastructure is utilized to develop our in-house tools. Novel
application parameters are introduced in the scope of application characterization as
the percentage cover, maximum basic block cycle and candidate-induced application
speedup due to the introduction of instruction extensions. An initial set of complex in-
structions is also generated in order to be used as a starting point in design space ex-
ploration iterations. To show the potential of the presented approach, the Wave-
let/Scalar Quantization image compression application is used as a case study.

References

1. Jacome, M.F., de Veciana, G.: Design challenges for new application-specific processors.
IEEE Design and Test of Computers, Vol. 17, No. 2, (2000) 40-50

2. Gonzalez R.: Xtensa: A configurable and extensible processor. IEEE Micro, Vol. 20, No. 2,
(2000) 60-70

3. Altera Nios: http://www.altera.com
4. Gaisler research: http://www.gaisler.com
5. Itoh, M., Higaki, S., Sato, J., Shiomi, A., Takeuchi, Y., Kitajima, A., Imai, M.: PEAS-III:

An ASIP design environment. IEEE Int. Conf. on Computer Design, (2000) 430-436
6. A. Hoffmann et al.: A novel methodology for the design of application-specific instruction

set processors (ASIPs) using a machine description language. IEEE Trans. on Computer-
Aided Design, Vol. 20, No. 11, (2001) 1338-1354

7. Smith M.D., Holloway G.: An introduction to Machine SUIF and its portable libraries for
analysis and optimization. Tech. Rpt., Division of Eng. and Applied Sciences, Harvard
University, 2.02.07.15 edition, (2002)

8. Gupta T.V.K., Sharma P., Balakrishnan M., Malik S.: Processor evaluation in an embedded
systems design environment., 13th Int. Conf. on VLSI Design, (2000) 98-103

9. Ghazal N., Newton R., Rabaey J.: Retargetable estimation scheme for DSP architecture se-
lection. Asia and South Pacific Design Automation Conf., (2000) 485-489

10. Kim S., Somani A.K.: Characterization of an extended multimedia benchmark on a general
purpose microprocessor architecture. Tech. Rpt DCNL-CA-2000-002, DCNL (2000)

11. Lee C., Potkonjak M., Mangione-Smith W.H.: MediaBench: A tool for evaluating and syn-
thesizing multimedia and communication systems. Proc. of the IEEE/ACM Symp. on Mi-
croarchitecture, (1997) 330-335

12. Leupers R., Wahlen O., Hohenauer M., Kogel T., Marwedel P.: An executable intermediate
representation for retargetable compilation and high-level code optimization. Int. Wkshp.
on Systems, Architectures, Modeling and Simulation (SAMOS), Samos, Greece (2003)

13. Clark N., Zhong H., Tang W., Mahlke S.: Automatic Design of Application Specific In-
struction Set Extensions through Dataflow Graph Exploration. Int. Journal of Parallel Pro-
gramming, Vol. 31, No. 6, (2003) 429-449

14. Hopper T., Brislawn C., Bradley J.: WSQ Greyscale Fingerprint Image Compression Speci-
fication, Version 2.0, Criminal Justice Information Services, FBI, Washington, DC (1993)

15. Kumar S., Pires L., Ponnuswamy S., Nanavati C., Golusky, Vojta M., Wadi S., Pandalai D.,
Spaanenburg H.: A benchmark suite for evaluating configurable computing systems –
Status, reflections, and future directions. ACM Int. Symp. on FPGAs (2000)

