
YARDstickYARDstick
Automation tool for custom processor development

Nikolaos Kavvadias and Spiridon Nikolaidis
Electronics Lab, Dept. of Physics, Aristotle Univ. of Thessaloniki, Greece 

Webpage: http://electronics.physics.auth.gr/people/nkavv/yardstick/
E-mail: nkavv@physics.auth.gr

What is YARDstick?What is YARDstick?
… a building block for ASIP development, 
integrating application analysis, custom instruction 
generation, selection and synthesis with user-
defined (compiler) IRs

YARDstick deals with these issues of contemporary ASIP 
development flows

Assumptions of the IR affecting solution quality
Exploration infrastructure tied up to conventions 

of the SW development tools
Support for low-level entry

Architecture targets: SUIFvm variants, integer DLX
6 backends for exporting basic blocks, control-flow 

graphs and custom instructions: 
ISeq (native format)
VCG, Graphviz dot for visualization
GGX XML for graph transformations
CDFG format for translation to synthesizable 

RTL VHDL, ANSI C

compiler

assembly

simulator YARDstickYARDstick

SALTO 
transforms

ISeq

BXIR

Application 
profile

Custom 
instructions

C/C++/?

A YARDstick environmentA YARDstick environment YARDstick components
libByoX: “Bring Your Own Compiler-and-
Simulator” kernel (target-independent)
libPatCUtE: Pattern-based Custom UniT 
Exploration (target-independent)
libmachine: Retargeted by a ByoX IR (BXIR) 
target architecture specification

ISeq

BXIR

YARDstick

libmachine.a

libbyox.a

libpatcute.a

An example sessionAn example session
1) Configuration for the target architecture and the application program of interest
2) C/”assembly”/ISeq file entry
3) Run the compiler/simulator (C/assembly applications)
4) Load the resulting ISeq file (omit steps 2-3 if done on step 2) 
5) Select backends, custom instruction generation/selection and additional options of your choice 
6) View results within the Results Browser

YARDstick is a retargetable application analysis and 
custom instruction generation/selection environment 
providing a compiler-/simulator-agnostic infrastructure

Separates design space exploration from 
compiler/simulator idiosyncrasies

Different compilers/simulators can be plugged-in
Both high- (ANSI C) and low-level (assembly for an 

architecture/VM) input can be analyzed



The technology behind YARDstickThe technology behind YARDstick

Sample benchmarksSample benchmarks
Abbreviation Application description Reference Entry in

crc32 Cyclic redundancy check MiBench ANSI C
deraiden Decoding raiden cipher raiden-cipher @ 

sourceforge
ISeq

enraiden Encoding raiden cipher raiden-cipher @ 
sourceforge

ISeq

fir FIR filter -- ANSI C

idea IDEA cryptographic kernel -- ANSI C
sha Secure Hash Algorithm producing an 160-bit message 

digest for a given input
MiBench ANSI C

adpcmdec Adaptive Differential Pulse Code Modulation (ADPCM) 
decoder

MiBench ANSI C, ISeq

adpcmenc Adaptive Differential Pulse Code Modulation (ADPCM) 
encoder

MiBench ANSI C, ISeq

fsme Full-search block-matching motion estimation -- ANSI C, ISeq
motcomp Motion compensation -- ANSI C, Iseq

ScreenshotsScreenshots

libByoX implements the core YARDstick API and 
provides frontends/manipulators for internal data structures

libPatCuTE implements instruction generation and 
selection 

Custom instruction (CI) generation methods:
- MaxMISO (maximal subgraphs with 1 output node)
- MISO exploration under user-defined constraints
- Fast MIMO (multiple-input, multiple-output) method 

Identification of redundant entire/partial CIs
Greedy instruction selection for cycle-gain, cycle-gain-

per-area priority metrics
Custom instruction/functional unit synthesis is supported 

by external tools (CDFG toolset)

The main YARDstick 
screen

Samples of dynamic 
statistics results Custom instruction analysis

Capabilities
Program analysis for C/assembly/ISeq applications
Data type and operation-level statistics 
Basic block execution frequencies for identifying 

hotspots in applications
Visualization (VCG, Graphviz) of BBs, CFGs and CIs
Export to the GGX XML format which is supported by 

the AGG attributed graph transformation system
ANSI C output (BBs, CIs) for use in simulators 
Application speedup due to CIs and CI selection analysis 
Interoperability with GCC and ArchC


